• Title/Summary/Keyword: finite difference/finite volume method

Search Result 190, Processing Time 0.031 seconds

Heat transfer analysis of closed-loop vertical ground heat exchangers using 3-D fluid flow and heat transfer numerical model (3차원 열유체 수치해석을 통한 현장 시공된 수직 밀폐형 지중열교환기의 열전달 거동 평가)

  • Park, Moon-Seo;Lee, Chul-Ho;Min, Sun-Hong;Kang, Shin-Hyung;Choi, Hang-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.800-807
    • /
    • 2010
  • In this study, a series of numerical analyses has been performed in order to evaluate the performance of a full-scale closed-loop vertical ground heat exchanger constructed in Wonju. The circulation pipe HDPE, borehole and surrounding ground were modeled using FLUENT, a finite-volume method (FVM) program, for analyzing the heat transfer process of the system. Two user-defined functions (UDFs) accounting for the difference in the temperatures of the circulating inflow and outflow water and the change of the surrounding ground temperature with depth were adopted in the FLUENT model. The thermal properties of materials estimated in laboratory were used in the numerical analyses to compare the thermal efficiency of the cement grout with that of the bentonite grout used in the construction. The results of the simulation provide a verification of the in situ thermal response test data. The numerical model with the ground thermal conductivity of 4W/mK yielded the simulation result closer to the in-situ thermal response test than with the ground thermal conductivity of 3W/mK. From the results of the numerical analyses, the effective thermal conductivities of the cement and bentonite grouts were obtained to be 3.32W/mK and 2.99 W/mK, respectively.

  • PDF

Analysis of Wave Pressure of Irregular Waves in front of a Breakwater (방파제 전면부에서의 불규칙파의 파압해석)

  • Woo Jong Hyub;Cho Yong-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1073-1077
    • /
    • 2005
  • In this study, wave pressure is calculated by using irregular waves in front of a breakwater. In the numerical model, the Reynolds equations are solved by a finite difference method and $k-{\varepsilon}$ model is employed for the turbulence analysis. To track the free surface displacement, the volume of fluid method is employed. The results of two cases present that wave pressure change due to irregular wave similar to wave height of irregular wave. It is observed that wave pressure of Case 2 more bigger than wave pressure of Case 1 at the same position.

  • PDF

Coupled Analysis of Heat Transfer, Fluid Flow and Solidification in the Filling of Castings (용탕충진과정에 있어서 열 및 유동을 포함한 2차원 응고해석)

  • Kim, Sung-Bin;Cho, In-Sung;Kim, Jin-Su;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.13 no.5
    • /
    • pp.424-431
    • /
    • 1993
  • A Numerical technique has been developed for the coupled heat transfer and fluid flow calculation during the casting process. In this method the SMAC technique was coupled with the concept of Volume of Fluid(VOF) to calculate melt free surface and velocity profiles within the melt, and the Energy Marker method coupled with the finite difference method was proposed for the convective and conductive heat transfer analysis in the casting. When comparing numerical calculations with experimental observations, a close correlation was evident. It has been shown that this technique is useful for proper gating and casting design, especially for thin-walled castings.

  • PDF

FDTD Analysis of the Absorption Characteristics for Grid Ferrite Electromagnetic Wave Absorber (FDTD를 이용한 격자형 페라이트 전파흡수체 특성 해석)

  • 이재용;정연춘;명노훈
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.4
    • /
    • pp.483-490
    • /
    • 1998
  • The reflectivity of a grid ferrite electromagnetic wave absorber is analyzed using finite difference time domain (FDTD) method, which is usually used in anechoic chambers for EMI / EMS test. The frequency dispersive characteristics of ferrite medium and its boundary condition are modeled using magnetic flux in addition to E- and H-fields. By applying Floquets theorem, FDTD analysis of the grid ferrite absorber with periodic infinite array is simplified as a unit cell problem. The method of homogenization which is mainly utilized in the calculation of absorber reflectivity as a low frequency technique takes only into account volume fraction of the unit cell of the absorber except for the structure of medium geometry. However, the presented method in this paper can analyze the geometry effect of the unit cell with its medium characteristics up to high frequency region.

  • PDF

Analysis on the thermal development of radiatively participating pipe flow with nonaxisymmetric convective heat loss (비축대칭 대류열손실 경계조건하에서 원관내 복사에 관여하는 매질의 층류 열적 발달의 수치해석)

  • ;;Baek, Seung-Wook
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.11
    • /
    • pp.2995-3002
    • /
    • 1995
  • The cooling problem of the hot internal pipe flow has been investigated. Simultaneous conduction, convection, and radiation were considered with azimuthally varying convective heat loss at the pipe wall. A complex, nonlinear integro-differential radiative transfer equation was solved by the discrete ordinates method (or called S$_{N}$ method). The energy equation was solved by control volume based finite difference technique. A parametric study was performed by varying the conduction-to-radiation parameter, optical thickness, and scattering albedo. The results have shown that initially the radiatively active medium could be more efficiently cooled down compared with the cases otherwise. But even for the case with dominant radiation, as the medium temperature was lowered, the contribution of conduction became to exceed that of radiation.n.

BLOCKAGE EFFECT ON FLOWS AROUND A ROTATIONALLY OSCILLATING CIRCULAR CYLINDER (회전 진동하는 원형실린더 주위 유동의 폐쇄효과 연구)

  • Kang, Seung-Hee;Kwon, Oh-Joon
    • Journal of computational fluids engineering
    • /
    • v.13 no.4
    • /
    • pp.33-38
    • /
    • 2008
  • For study on the unsteady blockage effect, flows around a rotationally oscillating circular cylinder with relatively low forcing frequency in closed test-section wind tunnels have been numerically investigated by solving compressible Navier-Stokes equations. The numerical scheme is based on a node-based finite-volume method with the Roe's flux-difference splitting and an implicit time-integration method coupled with dual time-step sub-iteration. The computed results of the oscillating cylinder in the test section showed that the fluctuations of lift and drag are augmented by the blockage effects. The drag further increases because of low base pressure. The pressure on the test section wall shows the harmonics having the oscillating and the shedding frequencies contained in the blockage effect.

Characteristics of an Entrainment into the Turbulent Buoyant Jet in a Cross Flow (직교류에서 난류제트로 유입되는 유량에 관한 고찰)

  • Kim, Hyung Min;Kim, Eunpil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.3
    • /
    • pp.342-351
    • /
    • 1999
  • A jet injected normally into a cross flow has been found to have the cross section of a horseshoe shape. It occurs by a twin vortex motion in the region downstream of the jet injection. Such a flow is inherently and highly three-dimensional and numerical calculations should play an important role. The three-dimensional momentum equations with buoyancy effect and energy equation are solved to obtain the velocity distributions, center-line trajectories, cross sectional shape and entrainment. The density difference is sufficiently small, so that the Boussinesq approximation is considered to be valid. The SIMPLE algorithm is applied in a staggered grid system of a calculational domain for the numerical method.

A Study on the impact and solidification of the liquid metal droplet in the thermal spray deposition (용사 공정에서 용융 금속 액적의 충돌현상과 응고 과정 해석)

  • Ha, Eung-Ji;Kim, Woo-Seung
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.214-219
    • /
    • 2001
  • In this study, numerical investigation has been performed on the spreading and solidification of a droplet impacting onto a solid substrate in the thermal spray process. The finite difference method with volume-of-fluid approach is used to analyze the free surface flow and the source-based enthalpy method is employed to model the latent heat release during the solidification. In this work, the numerical model is validated through the comparison of the present numerical result with experimental data available for the flat substrate.

  • PDF

Natural Convection for Air-Layer between Clothing and Body Skin (의복과 인체의 공기층에 관한 자연대류 특성)

  • Ji, M.K.;Bae, K.Y.;Chung, H.S.;Jeong, H.M.;Chu, M.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.648-653
    • /
    • 2001
  • This study represents the numerical analysis of natural convection of a microenvironments with a air permeability in the clothing air-layer. The clothing air layer of shoulder and arm was used for numerical analysis model. As a numerical analysis method, we adopted a finite volume method for two-dimensional laminar flow, and analyzed the flow and thermal characteristics of velocity, temperature and concentration in the air layer between body and clothing. As a temperature boundary conditions, we considered that a body skin has a high temperature with $34^{\circ}C$ the environmental temperatures are $5,\;15\;and\;25^{\circ}C$ for various permeability coefficients. The distributions of concentration, temperature and velocity were showed that two large cells were. formed at horizontal and vertical air layer, respectively. As the temperature difference between body skin and environment decrease, the heat transfer was decreased rapidly.

  • PDF

Voxelization-based Model for Predicting Thermal Conductivities of Spun Type Carbon Fabric Composites (복셀화기법을 이용한 탄소방적사강화 복합재료의 열전도도 모델링)

  • Cho, Young-Jun;Sul, In-Hwan;Kang, Tae-Jin;Park, Jong-Kyoo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.90-93
    • /
    • 2005
  • A thermal model of carbon spun yarn and its composite is presented. Based on voxelization method, the unit cells of spun carbon yam and its composite are divided into a number of volume elements and the local material properties have been given to each element. By using Finite Difference Method, temperature distribution in the unit cell can be obtained. Effective thermal conductivity of unit cell is calculated using the temperature distribution and thermal conductivities of local elements.

  • PDF