• Title/Summary/Keyword: finite cover method

Search Result 109, Processing Time 0.02 seconds

Bond Characteristics of Ultra High Performance Concrete (초고성능 콘크리트(UHPC)의 부착특성에 관한 연구)

  • Kook, Kyung-Hun;Shin, Hyun-Oh;Kwahk, Im-Jong;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.6
    • /
    • pp.753-760
    • /
    • 2010
  • Ultra high performance concrete (UHPC), is characterized by its high compressive strength and advanced tensile behavior that is much superior to those of conventional concrete. In order to apply this new material in practice, the bond characteristics of UHPC were evaluated in this study. Pull-out tests between UHPC and deformed steel rebar were carried out according to the modified RILEM test method, and were verified by finite element analysis. From the test results showed that UHPC presents 5 to 10 times higher bond strength compared to normal strength concrete, this study suggested remarkably reduced development length and concrete cover comparing to existing specifications. The test results of 700 MPa high strength steel rebar demonstrated the applicability of high strength steel to UHPC. In addition, the transfer length measurements of seven-wire strand in UHPC specimens indicated that the transfer length limit set by the current design code is very conservative for UHPC.

Laminar Flow in the Entrance Region of Helical Tubes Connected with Straight Ones (직관과 연결된 나선관 입구영역의 층류 유동)

  • Kim, Young-In;Park, Jong-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.1
    • /
    • pp.9-17
    • /
    • 2008
  • A numerical study for three-dimensional laminar flow in the entrance region of helical tubes connected with straight ones is carried out to investigate the effects of Reynolds number, pitch and curvature ratio on the oscillation periods of the flow. The fully elliptic governing equations were solved by means of a finite volume method. The fully developed laminar flow boundary condition was applied at the straight tube inlet. This results cover a curvature ratio range of 1/10${\sim}$1/320, a pitch range of 0.0${\sim}$3.2, and a Reynolds number range of 62.5${\sim}$2000. A comparison is made with previous experimental correlations and numerical data. The developments of velocity, local and average friction factors are discussed. The average friction factors are oscillatory in the entrance region of helical pipes. It has been found that the angle required for the flow to be similarly developed is most affected by the curvature ratio. The pitch and Reynolds number do not have any significant effect on the angle. The characteristic angle ${\phi}_c(={\phi}/sqrt{\delta})$, or the characteristic length to diameter ratio $s_c(=l\sqrt{\delta} cos(atan{\lambda})/d)$, can be useful to represent the development of flow in helical tubes. As the pitch increases and as the curvature ratio and Reynolds number decrease, the amplitude and the number of flow oscillations along the main streamwise direction decrease.

Seismic Performance Evaluation of the Underground Utility Tunnel by Response Displacement Method and Response History Analysis (응답변위법과 응답이력해석법을 이용한 지중 공동구의 내진성능 평가)

  • Kwon, Ki-Yong;Lee, Jin-Sun;Kim, Yong-Kyu;Youn, Jun-Ung;Jeong, Soon-Yong
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.11
    • /
    • pp.119-133
    • /
    • 2020
  • Underground utility tunnel, the most representative cut and cover structure, is subjected to seismic force by displacement of the surrounding soil. In 2020, Korea Infrastructure Safety Corporation has published "Seismic Performance Evaluation Guideline for Existing Utility Tunnel." This paper introduces two seismic evaluation methods, RDM (Response Displacement Method) and RHA (Response History Analysis) adopted in the guide and compares the methods for an example of an existing utility tunnel. The test tunnel had been constructed in 1988 and seismic design was not considered. RDM is performed by single and double cosine methods based on the velocity response spectrum at the base rock. RHA is performed by finite difference analysis that is able to consider nonlinear behavior of soil and structure together in two-dimensional plane strain condition. The utility tunnel shows elastic behavior for RDM, but shows plastic hinge for RHA under the collapse prevention level earthquake.

A Classification and Extraction Method of Object Structure Patterns for Framework Hotspot Testing (프레임워크 가변부위 시험을 위한 객체 구조 패턴의 분류 및 추출 방법)

  • Kim, Jang-Rae;Jeon, Tae-Woong
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.7
    • /
    • pp.465-475
    • /
    • 2002
  • An object-oriented framework supports efficient component-based software development by providing a flexible architecture that can be decomposed into easily modifiable and composable classes. Object-oriented frameworks require thorough testing as they are intended to be reused repeatedly In developing numerous applications. Furthermore, additional testing is needed each time the framework is modified and extended for reuse. To test a framework, it must be instantiated into a complete, executable system. It is, however, practically impossible to test a framework exhaustively against all kinds of framework instantiations, as possible systems into which a framework can be configured are infinitely diverse. If we can classify possible configurations of a framework into a finite number of groups so that all configurations of a group have the same structural or behavioral characteristics, we can effectively cover all significant test cases for the framework testing by choosing a representative configuration from each group. This paper proposes a systematic method of classifying object structures of a framework hotspot and extracting structural test patterns from them. This paper also presents how we can select an instance of object structure from each extracted test pattern for use in the frameworks hotspot testing. This method is useful for selection of optimal test cases and systematic construction of executable test target.

Seismic wave propagation through surface basalts - implications for coal seismic surveys (지표 현무암을 통해 전파하는 탄성파의 거동 - 석탄 탄성파탐사에 적용)

  • Sun, Weijia;Zhou, Binzhong;Hatherly, Peter;Fu, Li-Yun
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • Seismic reflection surveying is one of the most widely used and effective techniques for coal seam structure delineation and risk mitigation for underground longwall mining. However, the ability of the method can be compromised by the presence of volcanic cover. This problem arises within parts of the Bowen and Sydney Basins of Australia and seismic surveying can be unsuccessful. As a consequence, such areas are less attractive for coal mining. Techniques to improve the success of seismic surveying over basalt flows are needed. In this paper, we use elastic wave-equation-based forward modelling techniques to investigate the effects and characteristics of seismic wave propagation under different settings involving changes in basalt properties, its thickness, lateral extent, relative position to the shot position and various forms of inhomogeneity. The modelling results suggests that: 1) basalts with high impedance contrasts and multiple flows generate strong multiples and weak reflectors; 2) thin basalts have less effect than thick basalts; 3) partial basalt cover has less effect than full basalt cover; 4) low frequency seismic waves (especially at large offsets) have better penetration through the basalt than high frequency waves; and 5) the deeper the coal seams are below basalts of limited extent, the less influence the basalts will have on the wave propagation. In addition to providing insights into the issues that arise when seismic surveying under basalts, these observations suggest that careful management of seismic noise and the acquisition of long-offset seismic data with low-frequency geophones have the potential to improve the seismic results.

Bond Behavior between Parent Concrete and Carbon Fiber Mesh (탄소섬유메쉬와 콘크리트의 부착거동)

  • Yun, Hyun-Do;Sung, Soo-Yong;Oh, Jae-Hyuk;Seo, Soo-Yeon;Kim, Tae-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.769-777
    • /
    • 2003
  • The strengthening of concrete structures in situ with externally bonded carbon fiber is increasingly being used for repair and rehabilitation of existing structures. Because carbon fiber is attractive for this application due to its good tensile strength, resistances to corrosion, and low weight. Generally bond strength and behavior between concrete and carbon fiber mesh(CFM) is very important, because of enhancing bond of CFM. Therefore if bond strength is sufficient, it will be expect to enhance reinforcement effect. Unless sufficient, expect not to enhance reinforcement effect, because of occuring bond failure between concrete and CFM. In this study, the bond strength and load-displacement response of CFM to the concrete by the direct pull-out test(the tensile-shear test method) were investigated using the experiment and the finite element method analysis with ABAQUS. The key variables of the experiment are the location of clip, number of clips and thickness of cover mortar. The general results indicate that the clip anchorage technique for increasing bond strength with CFM appear to be effective to maintain the good post-failure behavior.

Three-dimensional Imaging of Subsurface Structures by Resistivity Tomography (전기비저항 토모그래피에 의한 지하구조의 3차원 영상화)

  • Yi Myeong-Jong;Kim Jung-Ho;Chung Seung-Hwan;Suh Jung Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.4
    • /
    • pp.236-249
    • /
    • 2002
  • We have extended the three-dimensional (3-D) resistivity imaging algorithm to cover the 3-D resistivity tomography problem, where resistivity data are acquired using electrodes installed in several boreholes as well as at the earth surface. The imaging algorithm consists of the 3-D finite element forward modeling and least-squares inversion scheme, where the ACB (Active Constraint Balancing) is adopted to enhance the resolving power of the inversion. Sensitivity analysis with numerical verifications shows that 3-D resistivity tomography is a very appealing method and can be used to get 3-D attitude of subsurface structures with very high-resolution. Moreover, we could accurately handle the topography effect, which could cause artifacts in the resistivity tomography. In the application of 3-D resistivity tomography to the real field data set acquired at the quarry mine, we could derive a very reasonable and accurate image of the subsurface.

Memory Organization for a Fuzzy Controller.

  • Jee, K.D.S.;Poluzzi, R.;Russo, B.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1041-1043
    • /
    • 1993
  • Fuzzy logic based Control Theory has gained much interest in the industrial world, thanks to its ability to formalize and solve in a very natural way many problems that are very difficult to quantify at an analytical level. This paper shows a solution for treating membership function inside hardware circuits. The proposed hardware structure optimizes the memoried size by using particular form of the vectorial representation. The process of memorizing fuzzy sets, i.e. their membership function, has always been one of the more problematic issues for the hardware implementation, due to the quite large memory space that is needed. To simplify such an implementation, it is commonly [1,2,8,9,10,11] used to limit the membership functions either to those having triangular or trapezoidal shape, or pre-definite shape. These kinds of functions are able to cover a large spectrum of applications with a limited usage of memory, since they can be memorized by specifying very few parameters ( ight, base, critical points, etc.). This however results in a loss of computational power due to computation on the medium points. A solution to this problem is obtained by discretizing the universe of discourse U, i.e. by fixing a finite number of points and memorizing the value of the membership functions on such points [3,10,14,15]. Such a solution provides a satisfying computational speed, a very high precision of definitions and gives the users the opportunity to choose membership functions of any shape. However, a significant memory waste can as well be registered. It is indeed possible that for each of the given fuzzy sets many elements of the universe of discourse have a membership value equal to zero. It has also been noticed that almost in all cases common points among fuzzy sets, i.e. points with non null membership values are very few. More specifically, in many applications, for each element u of U, there exists at most three fuzzy sets for which the membership value is ot null [3,5,6,7,12,13]. Our proposal is based on such hypotheses. Moreover, we use a technique that even though it does not restrict the shapes of membership functions, it reduces strongly the computational time for the membership values and optimizes the function memorization. In figure 1 it is represented a term set whose characteristics are common for fuzzy controllers and to which we will refer in the following. The above term set has a universe of discourse with 128 elements (so to have a good resolution), 8 fuzzy sets that describe the term set, 32 levels of discretization for the membership values. Clearly, the number of bits necessary for the given specifications are 5 for 32 truth levels, 3 for 8 membership functions and 7 for 128 levels of resolution. The memory depth is given by the dimension of the universe of the discourse (128 in our case) and it will be represented by the memory rows. The length of a world of memory is defined by: Length = nem (dm(m)+dm(fm) Where: fm is the maximum number of non null values in every element of the universe of the discourse, dm(m) is the dimension of the values of the membership function m, dm(fm) is the dimension of the word to represent the index of the highest membership function. In our case then Length=24. The memory dimension is therefore 128*24 bits. If we had chosen to memorize all values of the membership functions we would have needed to memorize on each memory row the membership value of each element. Fuzzy sets word dimension is 8*5 bits. Therefore, the dimension of the memory would have been 128*40 bits. Coherently with our hypothesis, in fig. 1 each element of universe of the discourse has a non null membership value on at most three fuzzy sets. Focusing on the elements 32,64,96 of the universe of discourse, they will be memorized as follows: The computation of the rule weights is done by comparing those bits that represent the index of the membership function, with the word of the program memor . The output bus of the Program Memory (μCOD), is given as input a comparator (Combinatory Net). If the index is equal to the bus value then one of the non null weight derives from the rule and it is produced as output, otherwise the output is zero (fig. 2). It is clear, that the memory dimension of the antecedent is in this way reduced since only non null values are memorized. Moreover, the time performance of the system is equivalent to the performance of a system using vectorial memorization of all weights. The dimensioning of the word is influenced by some parameters of the input variable. The most important parameter is the maximum number membership functions (nfm) having a non null value in each element of the universe of discourse. From our study in the field of fuzzy system, we see that typically nfm 3 and there are at most 16 membership function. At any rate, such a value can be increased up to the physical dimensional limit of the antecedent memory. A less important role n the optimization process of the word dimension is played by the number of membership functions defined for each linguistic term. The table below shows the request word dimension as a function of such parameters and compares our proposed method with the method of vectorial memorization[10]. Summing up, the characteristics of our method are: Users are not restricted to membership functions with specific shapes. The number of the fuzzy sets and the resolution of the vertical axis have a very small influence in increasing memory space. Weight computations are done by combinatorial network and therefore the time performance of the system is equivalent to the one of the vectorial method. The number of non null membership values on any element of the universe of discourse is limited. Such a constraint is usually non very restrictive since many controllers obtain a good precision with only three non null weights. The method here briefly described has been adopted by our group in the design of an optimized version of the coprocessor described in [10].

  • PDF

Development of Solar Warehouse for Drying and Storing the Agricultural Products (농산물(農産物) 건조(乾燥) 및 저장(貯藏)을 위(爲)한 태양열(太陽熱) 저장고(貯藏庫)의 개발(開發)에 관(關)한 연구(硏究))

  • Kim, Man Soo;Chang, Kyu Seob;Kim, Soung Rai;Jeon, Byeong Seon
    • Korean Journal of Agricultural Science
    • /
    • v.9 no.1
    • /
    • pp.357-370
    • /
    • 1982
  • Recent concern regarding price and availability of fossil fuels has spurred the interest in alternative sources for farm crop drying. Among the available options such as biomass energy, wind power, nuclear energy and solar energy etc., the increasing attention is being directed to the utilization of heat from solar energy especially for farm crop drying. Even though solar energy is dispersed over a large land area and only a relatively small amount of energy can be simply collected, the advantages of solar energy is that the energy is free, non-polluting. The study reported here was designed to help supply the informations for the development of simple and relatively inexpensive solar warehouse for farm crop drying and storage. Specifically, the objectives of this study were to determine the performance of the solar collector fabricated, to compare solar supplemented heat drying with natural air drying and to develop a simulation model of temperature in stored grain, which can be used to study the effects due to changes in ambient air temperature. For those above objectives, solar collector was fabricated from available materials. Corrugated steel galvanized sheet, painted flat black, was used as absorbers and clear 0.2mm polyethylene sheet was the cover material. The warehouse for rough rice drying and storage was constructed with concrete block, and the solar collector was used as the roof of warehouse instead of original roofing system of it. The results obtained in this study were as follows: 1. The thermal efficiency of the solar collector was average 26 percent and the overall heat transfer coefficient of the collector was approximately $25kJ/hr.m^2\;^{\circ}K$. 2. Solar heated air was sufficient to dry one cubic meter of rough rice from 23.5 to 15.0 percent in 7 days and natural air was able to dry the same amount of rough rice from 20.0 to 5 percent in l2 days. 3. Drying with solar heat reduced the required drying time to dry the same amount of rough rice into a half compared to natural air drying, but overdrying problems of the bottom layer were so severe that these problems should be thoroughly analyzed. 4. Simulation model of temperature in stored grain was developed and the results of predicted temperature agreed well with test results. 5. Based on those simulated temperature, changes in the grain-temperature were a large at the points of the wallside and the damage of the grain would be severe at the contact area of wall.

  • PDF