• 제목/요약/키워드: finite cover method

검색결과 108건 처리시간 0.026초

Towards improving finite element solutions automatically with enriched 2D solid elements

  • Lee, Chaemin;Kim, San
    • Structural Engineering and Mechanics
    • /
    • 제76권3호
    • /
    • pp.379-393
    • /
    • 2020
  • In this paper, we propose an automatic procedure to improve the accuracy of finite element solutions using enriched 2D solid finite elements (4-node quadrilateral and 3-node triangular elements). The enriched elements can improve solution accuracy without mesh refinement by adding cover functions to the displacement interpolation of the standard elements. The enrichment scheme is more effective when used adaptively for areas with insufficient accuracy rather than the entire model. For given meshes, an error for each node is estimated, and then proper degrees of cover functions are applied to the selected nodes. A new error estimation method and cover function selection scheme are devised for the proposed adaptive enrichment scheme. Herein, we demonstrate the proposed enrichment scheme through several 2D problems.

유한요소법과 반응표면법을 이용한 경량 맨홀 커버 구조 최적화 설계 (Structural Optimization of a Light-weight Manhole Cover Using FEM and Response Surface Method)

  • 이형욱
    • 한국생산제조학회지
    • /
    • 제25권6호
    • /
    • pp.462-470
    • /
    • 2016
  • The locking load of a conventional manhole depends on the weight of its cover. Locking-type manhole structures with a special locking mechanism were recently developed to prevent accidents such as stolen cover, away cover from a frame. The weight of the manhole structure can be reduced under structural safety because the locking force of a locking-type manhole is greater than the weight of the cover. A light-weight manhole cover is developed in this study by using a finite element stress analysis and the design of experiments. Static stress analysis and fracture experiments are also conducted to analyze the states of the initial product. The optimum light-weight manhole cover considering manufacturing molds is developed and tested. Consequently, the weight was found to reduce by 16%. In addition, the fracture load increased by 38%.

Numerical modeling of concrete cover cracking due to steel reinforcing bars corrosion

  • Mirzaee, Mohammad Javad;Alaee, Farshid Jandaghi;Hajsadeghi, Mohammad;Zirakian, Tadeh
    • Structural Engineering and Mechanics
    • /
    • 제61권6호
    • /
    • pp.693-700
    • /
    • 2017
  • Concrete cover cracking due to the corrosion of steel reinforcing bars is one of the main causes of deterioration in Reinforced Concrete (RC) structures. The oxidation level of the bars causes varying levels of expansion. The rebar expansions could lead to through-thickness cracking of the concrete cover, where depending on the cracking characteristics, the service life of the structures would be affected. In this paper, the effect of geometrical and material parameters, i.e., concrete cover thickness, reinforcing bar diameter, and concrete tensile strength, on the required pressure for concrete cover cracking due to corrosion has been investigated through detailed numerical simulations. ABAQUS finite element software is employed as a modeling platform where the concrete cracking is simulated by means of eXtended Finite Element Method (XFEM). The accuracy of the numerical simulations is verified by comparing the numerical results with experimental data obtained from the literature. Using a previously proposed empirical equation and the numerical model, the time from corrosion initiation to the cover cracking is predicted and then compared to the respective experimental data. Finally, a parametric study is undertaken to determine the optimum ratio of the rebar diameter to the reinforcing bars spacing in order to avoid concrete cover delamination.

FEM에 의한 자동차부품용 고무커버에 관한 해석 (FEM Analysis of Rubber Cover for Automotive Parts)

  • 김상우;김인관;강태호;김영수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.778-781
    • /
    • 2002
  • Durability of rubber dust cover in the ball joint for automotive suspension parts were analyzed by FEM and compared with experimental data. Upper open area of ball joint is sealed by dust cover for preventing outflow of the lubricating oil and intrusion of send, dust, water, etc. This rubber cover undergoes repeated loadings such as tension and compression while the car is running. Analysis about rubber material needs to consider every kinds of nonlinearities arise in finite element analysis, which are geometric nonlinearity due to large displacement and small strain, materially nonlinearity and nonlinear boundary condition such as contact. So in the study, the deformation behavior of dust cover was analysed by using the commercial finite element program MARC. This program could solve these kinds of nonlinear analysis accurately. Finite element model of dust cover is considered as 3-dimensional half model based on 2-dimensional axisymmetric model. Material property of rubber was modeled by Ogden model and input data for calculation takes form uniaxial tension test of rubber specimen, The final object of the study is obtaining the design specification of dust covers and the result of analysis should be a useful data to design of rubber

  • PDF

대용량 알터네이터의 코일덮개 설계 (Structural Design of a Coil Cover for High Capacity Alternator)

  • 김대원;김종수
    • 한국정밀공학회지
    • /
    • 제19권3호
    • /
    • pp.46-51
    • /
    • 2002
  • Recently, High capacity alternator are used fur some special equipments in industry. But, several serious problem are occured, especially, broken coil of rotor, caused by crash with stator on rotating the rotor. Although added coil cover thor protect coil of rotor, coil cover is broken. In this study purpose 2 step for corrected that problems. First, three dimensional finite element method far investigate what is most important point. For that purpose, performed stress analysis of coil and coil cover that modeling and finite analysis by ANSYS software. Second, Apply prestress when winding the coil on stator to modify direction of net force. Vector analysis is used for determine corrected prestress. Result of the analysis and prestress are reviewed.

A method of global-local analyses of structures involving local heterogeneities and propagating cracks

  • Kurumatani, Mao;Terada, Kenjiro
    • Structural Engineering and Mechanics
    • /
    • 제38권4호
    • /
    • pp.529-547
    • /
    • 2011
  • This paper presents the global-local finite cover method (GL-FCM) that is capable of analyzing structures involving local heterogeneities and propagating cracks. The suggested method is composed of two techniques. One of them is the FCM, which is one of the PU-based generalized finite element methods, for the analysis of local cohesive crack growth. The mechanical behavior evaluated in local heterogeneous structures by the FCM is transferred to the overall (global) structure by the so-called mortar method. The other is a method of mesh superposition for hierarchical modeling, which enables us to evaluate the average stiffness by the analysis of local heterogeneous structures not subjected to crack propagation. Several numerical experiments are conducted to validate the accuracy of the proposed method. The capability and applicability of the proposed method is demonstrated in an illustrative numerical example, in which we predict the mechanical deterioration of a reinforced concrete (RC) structure, whose local regions are subjected to propagating cracks induced by reinforcement corrosion.

철근부식에 의한 콘크리트의 균열발생에 관한 연구 (Effect of Rebar Corrosion on the Onset of Cracks in Cover Concrete)

  • 이한승
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.771-774
    • /
    • 1999
  • This study was carried out to quantitatively investigate the amount of corrosion at the time of onset of cracks in cover concrete due to rebar corrosion. In this experiments, the accelerated galvanostatic corrosion method was carried out. FEM analyses were also conducted to investigate the expansive behaviors due to rebar corrosion and the mechanical properties of corrosion products. As a result, it was concluded that the corrosion ratio at the time of onset of cracks in cover concrete was 3% by weight. The onset of cracks in cover concrete due to rebar corrosion could be analyzed by the finite element method.

  • PDF

Seismic response of concrete gravity dam-ice covered reservoir-foundation interaction systems

  • Haciefendioglu, K.;Bayraktar, A.;Turker, T.
    • Structural Engineering and Mechanics
    • /
    • 제36권4호
    • /
    • pp.499-511
    • /
    • 2010
  • This paper examines the ice cover effects on the seismic response of concrete gravity dam-reservoir-foundation interaction systems subjected to a horizontal earthquake ground motion. ANSYS program is used for finite element modeling and analyzing the ice-dam-reservoir-foundation interaction system. The ice-dam-reservoir interaction system is considered by using the Lagrangian (displacementbased) fluid and solid-quadrilateral-isoparametric finite elements. The Sariyar concrete gravity dam in Turkey is selected as a numerical application. The east-west component of Erzincan earthquake, which occurred on 13 March 1992 in Erzincan, Turkey, is selected for the earthquake analysis of the dam. Dynamic analyses of the dam-reservoir-foundation interaction system are performed with and without ice cover separately. Parametric studies are done to show the effects of the variation of the length, thickness, elasticity modulus and density of the ice-cover on the seismic response of the dam. It is observed that the variations of the length, thickness, and elasticity modulus of the ice-cover influence the displacements and stresses of the coupled system considerably. Also, the variation of the density of the ice-cover cannot produce important effects on the seismic response of the dam.

Numerical analysis of concrete degradation due to chloride-induced steel corrosion

  • Ayinde, Olawale O.;Zuo, Xiao-Bao;Yin, Guang-Ji
    • Advances in concrete construction
    • /
    • 제7권4호
    • /
    • pp.203-210
    • /
    • 2019
  • Concrete structures in marine environment are susceptible to chloride attack, where chloride diffusion results in the corrosion of steel bar and further lead to the cracking of concrete cover. This process causes structural deterioration and affects the response of concrete structures to different forms of loading. This paper presents the use of ABAQUS Finite Element Software in simulating the processes involved in concrete's structural degradation from chloride diffusion to steel corrosion and concrete cover cracking. Fick's law was used for the chloride diffusion, while the mass loss from steel corrosion was obtained using Faraday's law. Pressure generated by steel corrosion product at the concrete-steel interface was modeled by applying uniform radial displacements, while concrete smeared cracking alongside the Extended Finite Element Method (XFEM) was used for concrete cover cracking simulation. Results show that, chloride concentration decreases with penetration depth, but increases with exposure time at the concrete-steel interface. Cracks initiate and propagate in the concrete cover as pressure caused by the steel corrosion product increases. Furthermore, the crack width increases with the exposure time on the surface of the concrete.

유한 요소법을 이용한 플라스틱 실린더 헤드커버의 설계평가에 관한 연구

  • 김정엽
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1996년도 추계학술대회 논문
    • /
    • pp.126-132
    • /
    • 1996
  • This study is pre-research to evaluate the reasonability of convertion aluminum alloy cylinder head cover into plastic cylinder head cover using finite element analysis. The basedata which are needed in design are shown. On processing the study size of mesh and kind of elements are varied and adaptiv method is used.

  • PDF