• 제목/요약/키워드: finite commutative ring

검색결과 64건 처리시간 0.023초

QUASI-COMMUTATIVITY RELATED TO POWERS

  • Kim, Hyun-Min;Li, Dan;Piao, Zhelin
    • 대한수학회보
    • /
    • 제54권6호
    • /
    • pp.2107-2117
    • /
    • 2017
  • We study the quasi-commutativity in relation with powers of coefficients of polynomials. In the procedure we introduce the concept of ${\pi}$-quasi-commutative ring as a generalization of quasi-commutative rings. We show first that every ${\pi}$-quasi-commutative ring is Abelian and that a locally finite Abelian ring is ${\pi}$-quasi-commutative. The role of these facts are essential to our study in this note. The structures of various sorts of ${\pi}$-quasi-commutative rings are investigated to answer the questions raised naturally in the process, in relation to the structure of Jacobson and nil radicals.

ON QUASI-COMMUTATIVE RINGS

  • Jung, Da Woon;Kim, Byung-Ok;Kim, Hong Kee;Lee, Yang;Nam, Sang Bok;Ryu, Sung Ju;Sung, Hyo Jin;Yun, Sang Jo
    • 대한수학회지
    • /
    • 제53권2호
    • /
    • pp.475-488
    • /
    • 2016
  • We study the structure of central elements in relation with polynomial rings and introduce quasi-commutative as a generalization of commutative rings. The Jacobson radical of the polynomial ring over a quasi-commutative ring is shown to coincide with the set of all nilpotent polynomials; and locally finite quasi-commutative rings are shown to be commutative. We also provide several sorts of examples by showing the relations between quasi-commutative rings and other ring properties which have roles in ring theory. We examine next various sorts of ring extensions of quasi-commutative rings.

ON COMMUTATIVITY OF REGULAR PRODUCTS

  • Kwak, Tai Keun;Lee, Yang;Seo, Yeonsook
    • 대한수학회보
    • /
    • 제55권6호
    • /
    • pp.1713-1726
    • /
    • 2018
  • We study the one-sided regularity of matrices in upper triangular matrix rings in relation with the structure of diagonal entries. We next consider a ring theoretic condition that ab being regular implies ba being also regular for elements a, b in a given ring. Rings with such a condition are said to be commutative at regular product (simply, CRP rings). CRP rings are shown to be contained in the class of directly finite rings, and we prove that if R is a directly finite ring that satisfies the descending chain condition for principal right ideals or principal left ideals, then R is CRP. We obtain in particular that the upper triangular matrix rings over commutative rings are CRP.

EAKIN-NAGATA THEOREM FOR COMMUTATIVE RINGS WHOSE REGULAR IDEALS ARE FINITELY GENERATED

  • Chang, Gyu Whan
    • Korean Journal of Mathematics
    • /
    • 제18권3호
    • /
    • pp.271-275
    • /
    • 2010
  • Let R be a commutative ring with identity, T(R) be the total quotient ring of R, and D be a ring such that $R{\subseteq}D{\subseteq}T(R)$ and D is a finite R-module. In this paper, we show that each regular ideal of R is finitely generated if and only if each regular ideal of D is finitely generated. This is a generalization of the Eakin-Nagata theorem that R is Noetherian if and only if D is Noetherian.

THE INDEPENDENCE AND INDEPENDENT DOMINATING NUMBERS OF THE TOTAL GRAPH OF A FINITE COMMUTATIVE RING

  • Abughazaleh, Baha';Abughneim, Omar AbedRabbu
    • 대한수학회논문집
    • /
    • 제37권4호
    • /
    • pp.969-975
    • /
    • 2022
  • Let R be a finite commutative ring with nonzero unity and let Z(R) be the zero divisors of R. The total graph of R is the graph whose vertices are the elements of R and two distinct vertices x, y ∈ R are adjacent if x + y ∈ Z(R). The total graph of a ring R is denoted by 𝜏(R). The independence number of the graph 𝜏(R) was found in [11]. In this paper, we again find the independence number of 𝜏(R) but in a different way. Also, we find the independent dominating number of 𝜏(R). Finally, we examine when the graph 𝜏(R) is well-covered.

PRIME FACTORIZATION OF IDEALS IN COMMUTATIVE RINGS, WITH A FOCUS ON KRULL RINGS

  • Gyu Whan Chang;Jun Seok Oh
    • 대한수학회지
    • /
    • 제60권2호
    • /
    • pp.407-464
    • /
    • 2023
  • Let R be a commutative ring with identity. The structure theorem says that R is a PIR (resp., UFR, general ZPI-ring, π-ring) if and only if R is a finite direct product of PIDs (resp., UFDs, Dedekind domains, π-domains) and special primary rings. All of these four types of integral domains are Krull domains, so motivated by the structure theorem, we study the prime factorization of ideals in a ring that is a finite direct product of Krull domains and special primary rings. Such a ring will be called a general Krull ring. It is known that Krull domains can be characterized by the star operations v or t as follows: An integral domain R is a Krull domain if and only if every nonzero proper principal ideal of R can be written as a finite v- or t-product of prime ideals. However, this is not true for general Krull rings. In this paper, we introduce a new star operation u on R, so that R is a general Krull ring if and only if every proper principal ideal of R can be written as a finite u-product of prime ideals. We also study several ring-theoretic properties of general Krull rings including Kaplansky-type theorem, Mori-Nagata theorem, Nagata rings, and Noetherian property.

Where Some Inert Minimal Ring Extensions of a Commutative Ring Come from

  • Dobbs, David Earl
    • Kyungpook Mathematical Journal
    • /
    • 제60권1호
    • /
    • pp.53-69
    • /
    • 2020
  • Let (A, M) ⊂ (B, N) be commutative quasi-local rings. We consider the property that there exists a ring D such that A ⊆ D ⊂ B and the extension D ⊂ B is inert. Examples show that the number of such D may be any non-negative integer or infinite. The existence of such D does not imply M ⊆ N. Suppose henceforth that M ⊆ N. If the field extension A/M ⊆ B/N is algebraic, the existence of such D does not imply that B is integral over A (except when B has Krull dimension 0). If A/M ⊆ B/N is a minimal field extension, there exists a unique such D, necessarily given by D = A + N (but it need not be the case that N = MB). The converse fails, even if M = N and B/M is a finite field.

THE ZERO-DIVISOR GRAPH UNDER A GROUP ACTION IN A COMMUTATIVE RING

  • Han, Jun-Cheol
    • 대한수학회지
    • /
    • 제47권5호
    • /
    • pp.1097-1106
    • /
    • 2010
  • Let R be a commutative ring with identity, X the set of all nonzero, nonunits of R and G the group of all units of R. We will investigate some ring theoretic properties of R by considering $\Gamma$(R), the zero-divisor graph of R, under the regular action on X by G as follows: (1) If R is a ring such that X is a union of a finite number of orbits under the regular action on X by G, then there is a vertex of $\Gamma$(R) which is adjacent to every other vertex in $\Gamma$(R) if and only if R is a local ring or $R\;{\simeq}\;\mathbb{Z}_2\;{\times}\;F$ where F is a field; (2) If R is a local ring such that X is a union of n distinct orbits under the regular action of G on X, then all ideals of R consist of {{0}, J, $J^2$, $\ldots$, $J^n$, R} where J is the Jacobson radical of R; (3) If R is a ring such that X is a union of a finite number of orbits under the regular action on X by G, then the number of all ideals is finite and is greater than equal to the number of orbits.

THE GROUP OF UNITS IN A LEFT ARTINIAN RING

  • Han, Juncheol
    • 대한수학회보
    • /
    • 제31권1호
    • /
    • pp.99-104
    • /
    • 1994
  • Let R be a left Artinian ring with identity 1 and let G be the group of units of R. It is shown that if G is finite, then R is finite. It is also shown that if 2.1 is a unit in R, then G is abelian if and only if R is commutative.

  • PDF

THE STRUCTURE OF SEMIPERFECT RINGS

  • Han, Jun-Cheol
    • 대한수학회지
    • /
    • 제45권2호
    • /
    • pp.425-433
    • /
    • 2008
  • Let R be a ring with identity $1_R$ and let U(R) denote the group of all units of R. A ring R is called locally finite if every finite subset in it generates a finite semi group multiplicatively. In this paper, some results are obtained as follows: (1) for any semilocal (hence semiperfect) ring R, U(R) is a finite (resp. locally finite) group if and only if R is a finite (resp. locally finite) ring; U(R) is a locally finite group if and only if U$(M_n(R))$ is a locally finite group where $M_n(R)$ is the full matrix ring of $n{\times}n$ matrices over R for any positive integer n; in addition, if $2=1_R+1_R$ is a unit in R, then U(R) is an abelian group if and only if R is a commutative ring; (2) for any semiperfect ring R, if E(R), the set of all idempotents in R, is commuting, then $R/J\cong\oplus_{i=1}^mD_i$ where each $D_i$ is a division ring for some positive integer m and |E(R)|=$2^m$; in addition, if 2=$1_R+1_R$ is a unit in R, then every idempotent is central.