• Title/Summary/Keyword: finite R-module

Search Result 66, Processing Time 0.019 seconds

ON GRAPHS ASSOCIATED WITH MODULES OVER COMMUTATIVE RINGS

  • Pirzada, Shariefuddin;Raja, Rameez
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.5
    • /
    • pp.1167-1182
    • /
    • 2016
  • Let M be an R-module, where R is a commutative ring with identity 1 and let G(V,E) be a graph. In this paper, we study the graphs associated with modules over commutative rings. We associate three simple graphs $ann_f({\Gamma}(M_R))$, $ann_s({\Gamma}(M_R))$ and $ann_t({\Gamma}(M_R))$ to M called full annihilating, semi-annihilating and star-annihilating graph. When M is finite over R, we investigate metric dimensions in $ann_f({\Gamma}(M_R))$, $ann_s({\Gamma}(M_R))$ and $ann_t({\Gamma}(M_R))$. We show that M over R is finite if and only if the metric dimension of the graph $ann_f({\Gamma}(M_R))$ is finite. We further show that the graphs $ann_f({\Gamma}(M_R))$, $ann_s({\Gamma}(M_R))$ and $ann_t({\Gamma}(M_R))$ are empty if and only if M is a prime-multiplication-like R-module. We investigate the case when M is a free R-module, where R is an integral domain and show that the graphs $ann_f({\Gamma}(M_R))$, $ann_s({\Gamma}(M_R))$ and $ann_t({\Gamma}(M_R))$ are empty if and only if $$M{\sim_=}R$$. Finally, we characterize all the non-simple weakly virtually divisible modules M for which Ann(M) is a prime ideal and Soc(M) = 0.

w-INJECTIVE MODULES AND w-SEMI-HEREDITARY RINGS

  • Wang, Fanggui;Kim, Hwankoo
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.3
    • /
    • pp.509-525
    • /
    • 2014
  • Let R be a commutative ring with identity. An R-module M is said to be w-projective if $Ext\frac{1}{R}$(M,N) is GV-torsion for any torsion-free w-module N. In this paper, we define a ring R to be w-semi-hereditary if every finite type ideal of R is w-projective. To characterize w-semi-hereditary rings, we introduce the concept of w-injective modules and study some basic properties of w-injective modules. Using these concepts, we show that R is w-semi-hereditary if and only if the total quotient ring T(R) of R is a von Neumann regular ring and $R_m$ is a valuation domain for any maximal w-ideal m of R. It is also shown that a connected ring R is w-semi-hereditary if and only if R is a Pr$\ddot{u}$fer v-multiplication domain.

THE DETERMINANT MAP FROM THE AUTOMORPHISM GROUP OF A PROJECTIVE R-MODULE TO THE UNIT GROUP OF R

  • Lee, Sang Cheol;Kim, Sang-hee
    • Honam Mathematical Journal
    • /
    • v.39 no.4
    • /
    • pp.677-688
    • /
    • 2017
  • Let P be a finitely generated projective module over a commutative ring R with identity. If P has finite rank, then it will be shown that the map ${\varphi}:Aut_R(P){\rightarrow}U(R)$ defined by ${\varphi}({\alpha})={\det}({\alpha})$ is locally surjective and $Ker({\varphi})=SL_R(P)$.

EAKIN-NAGATA THEOREM FOR COMMUTATIVE RINGS WHOSE REGULAR IDEALS ARE FINITELY GENERATED

  • Chang, Gyu Whan
    • Korean Journal of Mathematics
    • /
    • v.18 no.3
    • /
    • pp.271-275
    • /
    • 2010
  • Let R be a commutative ring with identity, T(R) be the total quotient ring of R, and D be a ring such that $R{\subseteq}D{\subseteq}T(R)$ and D is a finite R-module. In this paper, we show that each regular ideal of R is finitely generated if and only if each regular ideal of D is finitely generated. This is a generalization of the Eakin-Nagata theorem that R is Noetherian if and only if D is Noetherian.

MODULE-THEORETIC CHARACTERIZATIONS OF KRULL DOMAINS

  • Kim, Hwan-Koo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.3
    • /
    • pp.601-608
    • /
    • 2012
  • The following statements for an infra-Krull domain $R$ are shown to be equivalent: (1) $R$ is a Krull domain; (2) for any essentially finite $w$-module $M$ over $R$, the torsion submodule $t(M)$ of $M$ is a direct summand of $M$; (3) for any essentially finite $w$-module $M$ over $R$, $t(M){\cap}pM=pt(M)$, for all maximal $w$-ideal $p$ of $R$; (4) $R$ satisfies the $w$-radical formula; (5) the $R$-module $R{\oplus}R$ satisfies the $w$-radical formula.

A NOTE ON w-NOETHERIAN RINGS

  • Xing, Shiqi;Wang, Fanggui
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.541-548
    • /
    • 2015
  • Let R be a commutative ring. An R-module M is called a w-Noetherian module if every submodule of M is of w-finite type. R is called a w-Noetherian ring if R as an R-module is a w-Noetherian module. In this paper, we present an exact version of the Eakin-Nagata Theorem on w-Noetherian rings. To do this, we prove the Formanek Theorem for w-Noetherian rings. Further, we point out by an example that the condition (${\dag}$) in the Chung-Ha-Kim version of the Eakin-Nagata Theorem on SM domains is essential.

RINGS AND MODULES WHICH ARE STABLE UNDER NILPOTENTS OF THEIR INJECTIVE HULLS

  • Nguyen Thi Thu Ha
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.2
    • /
    • pp.339-348
    • /
    • 2023
  • It is shown that every nilpotent-invariant module can be decomposed into a direct sum of a quasi-injective module and a square-free module that are relatively injective and orthogonal. This paper is also concerned with rings satisfying every cyclic right R-module is nilpotent-invariant. We prove that R ≅ R1 × R2, where R1, R2 are rings which satisfy R1 is a semi-simple Artinian ring and R2 is square-free as a right R2-module and all idempotents of R2 is central. The paper concludes with a structure theorem for cyclic nilpotent-invariant right R-modules. Such a module is shown to have isomorphic simple modules eR and fR, where e, f are orthogonal primitive idempotents such that eRf ≠ 0.

RAD-SUPPLEMENTING MODULES

  • Ozdemir, Salahattin
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.2
    • /
    • pp.403-414
    • /
    • 2016
  • Let R be a ring, and let M be a left R-module. If M is Rad-supplementing, then every direct summand of M is Rad-supplementing, but not each factor module of M. Any finite direct sum of Rad-supplementing modules is Rad-supplementing. Every module with composition series is (Rad-)supplementing. M has a Rad-supplement in its injective envelope if and only if M has a Rad-supplement in every essential extension. R is left perfect if and only if R is semilocal, reduced and the free left R-module $(_RR)^{({\mathbb{N})}$ is Rad-supplementing if and only if R is reduced and the free left R-module $(_RR)^{({\mathbb{N})}$ is ample Rad-supplementing. M is ample Rad-supplementing if and only if every submodule of M is Rad-supplementing. Every left R-module is (ample) Rad-supplementing if and only if R/P(R) is left perfect, where P(R) is the sum of all left ideals I of R such that Rad I = I.

DING PROJECTIVE DIMENSION OF GORENSTEIN FLAT MODULES

  • Wang, Junpeng
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.6
    • /
    • pp.1935-1950
    • /
    • 2017
  • Let R be a Ding-Chen ring. Yang [24] and Zhang [25] asked whether or not every R-module has finite Ding projective or Ding injective dimension. In this paper, we give a new characterization of that all modules have finite Ding projective and Ding injective dimension in terms of the relationship between Ding projective and Gorenstein flat modules. We also give an example to obtain negative answer to the above question.

Finitely Generated Modules over Semilocal Rings and Characterizations of (Semi-)Perfect Rings

  • Chang, Chae-Hoon
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.1
    • /
    • pp.143-154
    • /
    • 2008
  • Lomp [9] has studied finitely generated projective modules over semilocal rings. He obtained the following: finitely generated projective modules over semilocal rings are semilocal. We shall give necessary and sufficient conditions for finitely generated modules to be semilocal modules. By using a lifting property, we also give characterizations of right perfect (semiperfect) rings. Our main results can be summarized as follows: (1) Let M be a finitely generated module. Then M has finite hollow dimension if and only if M is weakly supplemented if and only if M is semilocal. (2) A ring R is right perfect if and only if every flat right R-module is lifting and every right R-module has a flat cover if and only if every quasi-projective right R-module is lifting. (3) A ring R is semiperfect if and only if every finitely generated flat right R-module is lifting if and only if RR satisfies the lifting property for simple factor modules.