• Title/Summary/Keyword: finishing agent

Search Result 246, Processing Time 0.026 seconds

Development and Application of Cationic Agent (I) (Quaternized Polyepichlorohydrine) (카치온화제의 개발과 응용 (I) (4급화 폴리에피크로로히드린))

  • Kim, Moon Sik;Jung, Young Jin;Park, Soo Min
    • Textile Coloration and Finishing
    • /
    • v.7 no.2
    • /
    • pp.70-76
    • /
    • 1995
  • The polyepichlorohydrine(poly(ECH)) was prepared by the condensation polymerization of epichlorohydrine. The cationic agent was prepared from poly(ECH) by amination of poly(ECH) with dimethyleneamine. Pretreatment of cellulosic fabric with the poly(ECH)amine produced a modified fabrics that could be dyed under neutral condition with reactive dye using small amount of the salt. Colour yield of cellulosic fabric were increased by increasing salt concentraction. cationic agent concentration. The optimum condition for colour yield was the concentration of cationic agent 5%(o.w.f), that of NaCl 4g/l, and that of $Na_{2}CO_{3}$5g/l. The dyeing of treated fabrics exhibits improved colour yield and high wash fastness.

  • PDF

The Synthesis of Reactive Dichloro-s-triazinyl Anionic Agent for Cellulosic Fibers and its Application (셀룰로오스 섬유용 반응형 디클로로트리아진계 음이온화제의 합성 및 응용)

  • 김태경;윤석한;임용진;손영아
    • Textile Coloration and Finishing
    • /
    • v.15 no.5
    • /
    • pp.294-300
    • /
    • 2003
  • The anionic agent containing dichloro-s-triazinyl reactive group was synthesized and applied to the cotton fabrics to introduce covalent bonds. This attempt was expected to improve the affinities of cationic compounds, such as cationic dyes, chitosan, quaternary ammonium antimicrobial agents and metal ions, by the electrostatic attractive force. As expected, the anionic agent was reacted with cotton fabrics at room temperature. In order to examine the adsorptivity of the cationic compounds on to the anionized cotton fabrics, firstly a cationic dye(C. I. Basic Violet 7) was applied. The color strength of the dyeing of anioized cotton fabric was highly increased comparing to that of untreated fabric.

Preparation, Physical Characteristics and Antibacterial Finishing of PCM/Nylon Fibers having Sheath/Core Structure (상전이물질(PCM)과 Nylon 6를 이용한 Sheath/Core 형태의 복합섬유 제조, 물리적 특성 및 항균가공특성 연구)

  • Kim, Hak-Soo;Hwang, Ji-Yong;Lim, Sang-Hyun;Lim, Jeong-Nam;Son, Young-A
    • Textile Coloration and Finishing
    • /
    • v.26 no.4
    • /
    • pp.311-321
    • /
    • 2014
  • In this study, Aftertreatment properties of PCM/Nylon sheath/core fabrics have been determined. Especially, the relationship between finishing property and content including of PCM ratio. Samples of PCM/Nylon fabrics were monitored, separately, with 2% o.w.f solutions of each of the berberine chloride, cetylpyridinium chloride(CPC), benzyldimethylhexadecyl ammonium chloride(BDHAC) and dodecyltrimetyl ammonium bromide(DTAB). Various temperatures and liquor ratio and pH conditions were also studied to optimize aftertreatment properties. Berberine chloride finished sample showed the good color fastness. Cetylpyridinium chloride(CPC) finished sample showed very effective antibacterial properties against Staphylococcus aureus and Klebsiella pneumoniae.

Surface Finishing Technique for Micro 3-Dimensional Structures Using ER Fluid

  • Kim, Wook-Bae;Lee, Sang-Jo;Kim, Yong-Jun;Lee, Eung-Sug
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.1
    • /
    • pp.47-54
    • /
    • 2004
  • In this study, the electrorheological (ER) fluid was used as finishing agent. Since the apparent viscosity can be controlled by an electric field, the ER fluid can be one of efficient materials in finishing processes. To finish small 3-dimensional structures such as the aspherical surface in optical elements, the possible arrangement of a tool, part and auxiliary electrode was described. We examined the influence of the addition of a few abrasive particles on the performance of the ER fluid by measuring yield stress and observed the behavior of abrasive particles in the ER fluid by a CCD camera, which had been also theoretically predicted from the electromechanical principles of particles. On the basis of the above results, the steady flow analysis around the rotating micro tool was performed considering the non-uniform electric field. Finally, borosilicate glass was finished using the mixture of the ER fluid and abrasive particles and material removal with field strength and surface roughness were investigated.

A Study on Carbonation Resistance of Concrete Using Surface-coated Lightweight Aggregates (표면코팅된 경량골재를 사용한 콘크리트의 탄산화 저항성에 관한 연구)

  • Eom, In-Hyeok;Jeong, Euy-Chang;Kim, Young-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.1
    • /
    • pp.21-28
    • /
    • 2014
  • The purpose of this study is to investigate the mechanical properties and carbonation resistance of concretes using lightweight aggregate coated surface finishing materials. To evaluate the mechanical properties and carbonation resistance of concrete, slump, air amount, air-dried unit volume weight, compressive strength, and carbonation depth are tested. In terms of the unit volume weight of concrete, air-dried unit volume weight of concrete using coating lightweight aggregate was measured as $1,739{\sim}1,806kg/m^3$. When using coating aggregate, compressive strength of concrete at 28 days was measured as much as 82.7~95.9% of the compressive strength using non-coating aggregate. It is found that compressive strength tends to decrease with coating lightweight aggregate. However, all concretes using coating lightweight aggregate except O-LWAC satisfied the criteria for 28-day compressive strength suggested in KS. The measurement of carbonation depth when the water-repellent agent was used found that carbonation depth was reduced by as much as 2.6~6.1%. On the other hand, when using polymer waterproof agent, carbonation depth was reduced by as much as 8.6~12.0%. Consequently, to improve carbonation resistance, polymer waterproof agent was more effective than water-repellent agent. In particular, epoxy showed the most outstanding performance.

Formaldehyde Free Cross-linking Agents Based on Maleic Anhydride Copolymers

  • Yoon, Kee-Jong;Woo, Jong-Hyung;Seo, Young-Sam
    • Fibers and Polymers
    • /
    • v.4 no.4
    • /
    • pp.182-187
    • /
    • 2003
  • Low molecular weight copolymers of maleic anhydride and vinyl acetate were prepared to develop formaldehyde free cross-linking agents. Since lower molecular weight is favorable for efficient penetration of the finishing agent into the cotton fibers in the padding process, the concentration of the initiator, chain transfer agent and the monomer ratios were varied to obtain copolymers of low molecular weights. The prepared polymers were characterized by GPC, $^1{H-NMR}$, FTIR, DSC and TGA. Copolymers of molecular weights of 2 000 to 10 000 were obtained and it was found that the most efficient method of controlling the molecular weight was by varying the monomer ratios. Poly(maleic anhydride-co-vinyl acetate) did not dissolve in water, but the maleic anhydride residue hydrolyzed within a few minutes to form poly(maleic acid-co-vinyl acetate) and dissolved in water. However, the maleic acid units undergo dehydration to form anhydride groups on heating above ${160}^{\circ}C$ to some extent even in the absence of catalysts. The possibility of using the copolymers as durable press finishing agent for cotton fabric was investigated. Lower molecular weight poly(maleic anhydride-co-vinyl acetate) copolymers were more efficient in introducing crease resistance, which appears to be due to the more efficient penetration of the cross-linking agent into cotton fabrics. The wrinkle recovery angles of cotton fabrics treated with poly(maleic anhydride-co-vinyl acetate) copolymers were slightly lower than those treated with DMDHEU and were higher when higher curing temperatures or higher concentrations of copolymer were used, and when catalyst, $NaH_2$$PO_2$, was added. The strength retention of the poly(maleic anhydride-co-vinyl acetate) treated cotton fabrics was excellent.