• Title/Summary/Keyword: fingerprinting

Search Result 504, Processing Time 0.024 seconds

Implementation of a Library Function of Scanning RSSI and Indoor Positioning Modules (RSSI 판독 라이브러리 함수 및 옥내 측위 모듈 구현)

  • Yim, Jae-Geol;Jeong, Seung-Hwan;Shim, Kyu-Bark
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.11
    • /
    • pp.1483-1495
    • /
    • 2007
  • Thanks to IEEE 802.11 technique, accessing Internet through a wireless LAN(Local Area Network) is possible in the most of the places including university campuses, shopping malls, offices, hospitals, stations, and so on. Most of the APs(access points) for wireless LAN are supporting 2.4 GHz band 802.11b and 802.11g protocols. This paper is introducing a C# library function which can be used to read RSSIs(Received Signal Strength Indicator) from APs. An LBS(Location Based Service) estimates the current location of the user and provides useful user's location-based services such as navigation, points of interest, and so on. Therefore, indoor, LBS is very desirable. However, an indoor LBS cannot be realized unless indoor position ing is possible. For indoor positioning, techniques of using infrared, ultrasound, signal strength of UDP packet have been proposed. One of the disadvantages of these techniques is that they require special equipments dedicated for positioning. On the other hand, wireless LAN-based indoor positioning does not require any special equipments and more economical. A wireless LAN-based positioning cannot be realized without reading RSSIs from APs. Therefore, our C# library function will be widely used in the field of indoor positioning. In addition to providing a C# library function of reading RSSI, this paper introduces implementation of indoor positioning modules making use of the library function. The methods used in the implementation are K-NN(K Nearest Neighbors), Bayesian and trilateration. K-NN and Bayesian are kind of fingerprinting method. A fingerprint method consists of off-line phase and realtime phase. The process time of realtime phase must be fast. This paper proposes a decision tree method in order to improve the process time of realtime phase. Experimental results of comparing performances of these methods are also discussed.

  • PDF

The distribution and antimicrobial susceptibility of pathogenic microorganisms isolated from chicken slaughtering and processing procedure (닭 도계 및 가공공정 중 유해미생물의 분포와 항생제 감수성)

  • Seol, Kuk-Hwan;Kim, Ki Hyun;Jo, Su-Mi;Kim, Young Hwa;Kim, Hyun-Wook;Ham, Jun-Sang
    • Korean Journal of Agricultural Science
    • /
    • v.42 no.1
    • /
    • pp.29-35
    • /
    • 2015
  • This study was performed to analyze the distribution and antimicrobial resistance of pathogenic microorganisms isolated from the carcass and environments of chicken processing plant located in Gyeonggi province from October to November in 2010. Chicken slaughterhouse was visited 3 times and totally 40 samples were collected from chicken carcass before and after washing (n=14), chicken cuts (n=7), cooling water (n=8), brine (n=2), cutting knives (n=7) and working plate (n=2). Whole-chicken rinsing technique (for chicken carcasses) and swab technique (for working plate and knives) were used to analyze the distribution of pathogenic microorganisms. In addition, brine and chilling water from storage tanks were gathered using sterilized tubes and used as samples. The matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) for whole cell fingerprinting in combination with a dedicated bioinformatic software tool was used to identify the isolated microorganisms. The pathogenic microorganisms, such as Bacillus cereus (n=8) and Staphylococcus aureus (n=9), were isolated form the chicken processing process (chicken carcasses of before and after chilling, chicken cuts, and working plate). The antimicrobial susceptibility of those isolated microorganisms was analyzed using 21 antimicrobial agents. In the case of B. cereus, it showed 100% of resistance to subclasses of penicillins and peptides, and it also resistant to cephalothin, a member of critically important antimicrobials (CIA), however there was no resistance (100% susceptible) to vancomycin and chloramphenicol. S. aureus showed 100% resistance to subclasses of peptides and some of penicillins (penicillin and oxacillin), however, it showed 100% susceptibility to cephalosporins (cefazolin and cephalothin). All of the tested pathogens showed multi drug resistance (MDR) more than 4 subclasses and one of B. cereus and S. aureus showed resistance to 9 subclasses. After the ban on using the antimicrobials in animal feed in July 2011, there would be some change in microbial distribution and antimicrobial resistance, and it still has a need to be analyzed.

Identification of Lactobacillus spp. associated with nematodes in peach farm soil (복숭아 농장 토양에서 Nematodes와 연관된 Lactobacillus spp.의 분리 및 동정)

  • Lee, Woo-Hyun;Choi, Jae Im;Lee, Jin Il;Lee, Won-Pyo;Yoon, Sung-Sik
    • Korean Journal of Microbiology
    • /
    • v.53 no.3
    • /
    • pp.163-169
    • /
    • 2017
  • Strains D4 and D5 were isolated from peach-rotten soil during the peach harvest season. The isolates were identified based on morphological and biochemical characterization, and identification was determined by 16S rRNA gene sequencing. Results showed that D4 has high similarity to Lactobacillus plantarum ATCC $14917^T$ and Lactobacillus pentosus ATCC $8041^T$ at 99.05% and 98.98%, respectively. D5 was also similar to Lactobacillus pentosus ATCC $8041^T$ and Lactobacillus plantarum ATCC $14917^T$ at 98.71% and 98.64%, respectively. In contrast, isolates showed differences in carbohydrate utilization in comparison to Lactobacillus plantarum ATCC $14917^T$ and Lactobacillus pentosus ATCC $8041^T$. In view of this we performed VITEK MS matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis, multiplex PCR fingerprinting, and random amplified polymorphic DNA (RAPD)-PCR to further confirm the identification of D4 and D5. The results of these analyses showed that both strains were most similar to Lactobacillus plantarum.

Rapid and Simultaneous Determination of Ginsenosides Rb1, Rb2, Rc and Re in Korean Red Ginseng Extract by HPLC using Mass/Mass Spectrometry and UV Detection

  • Kwon, Young-Min;Lee, Sung-Dong;Kang, Hyun-Sook;Cho, Mu-Gung;Hong, Soon-Sun;Park, Chae-Kyu;Lee, Jong-Tae;Jeon, Byeong-Seon;Ko, Sung-Ryong;Shon, Hyun-Joo;Choi, Dal-Woong
    • Journal of Ginseng Research
    • /
    • v.32 no.4
    • /
    • pp.390-396
    • /
    • 2008
  • For evaluating the quality of ginseng, simple and fast analysis methods are needed to determine the ginsenoside content of the ginseng products. The aim of this study was therefore to optimize conditions for fast analysis of the ginsenosides, the active ingredients in extracts of Korean red ginseng. When tandem HPLC mass spectrometry (HPLC-MS/MS) was used, four forms of ginsenoside, Rb1, Rb2, Rc, and Re, were readily separated in seven minutes using a gradient mobile phase (acetonitrile and water containing acetic acid). This is the shortest separation time reported among the studies of major ginsenoside analysis. When gradient HPLC with UV detection was used, the detection limit was high, but separation of these four ginsenosides required 25 minutes using acetonitrile and water containing formic acid as a mobile phase. HPLC-MS/MS was able to separate ginsenoside Rg1 easily regardless of the mobile phase condition, but the HPLC-UV could not separate Rg1 because acetonitrile concentration in the mobile phase had to be maintained below 20%. Ginsenoside peaks were clearer and had more sensitive detection limits when Korean red ginseng extract was analyzed by the HPLC-MS/MS, but the UV detection was useful for chromatographic fingerprinting of all four major ginsenosides of the extract: Rb1, Rb2, Rc, and Re. Extracts were found to contain 2.17 mg, 1.51 mg, 1.29 mg, and 0.46 mg of ginsenoside Rb1, Rb2, Rc, Re, respectively, per gram weight. The ratios of each ginsenoside in the extracts were 1.0 : 0.7 : 0.6 : 0.2, respectively. Taken together, the results indicate that HPLC-MS/MS spectrometry could be the most useful method for rapid analysis of even small amounts of major ginsenosides, while HPLC with UV detection could also be used for rapid analysis of major ginsenosides and for quality control of ginseng products.

Characterization of Cucumver mosaic virus Isolated from Hydrangea macrophylla for. otaksa (Sieb. et Zucc) Wils. (수국에서 분리한 Cucumber mosaic virus의 특성)

  • 방주희;박선정;이금희;최장경;이상용
    • Research in Plant Disease
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 2001
  • An isolate of Cucumber mosaic cucumovirus(CMV) was isolated from Hydrangea macrophylla for. otaksa(Sieb. et Zucc. ) Wils. showing mosaic symptoms, and designated as Hm-CMV. Hm-CMV was characterized by the tests of host range, physical properties, serological properties, RNA and coat protein compositions, and reverse transcription and polymerase chain reaction (RT-PCR) analysis. Twelve species in 4 families were used in the host range test of Hm-CMV and could be differentiated from Y-CMV used as a control CMV by the ringspot and line pattern on inoculated leaves of several tobacco plants. Thevirus produced local lesions on inoculated leaves of Chenopodium amarticolor, C. quinoa and Vigna unguiculata. The physical properties of the virus were as follows; thermal inactivation point(TIP) was 60$\^{C}$, dilution end point (DEP) was 10$\^$-3/, and longevity in vitro (LIP) was 3∼4 days. Hm-CMV was serologically identical to Y-CMV. SDS-polyaciylamide gel electrophoresis(SDS-PAGE) showed one major protein band of about 28 kDa. In RNA or dsRNA analysis, Hm-CMV consisted of four RNA or dsRNA species, but satellite RNA was not detected. In RT-PCR using CMV-common primer and CMV subgroup I-specific primer, bothe amplified expected size of about 490 bp and 200 bp DNA fragments from Hm-CMV, respectively. Restriction enzyme analysis of the 490 bp RT-PCR products using EcoR I and Msp I showed that Hm-CMV belonged to CMV subgroup I. However, Hm-CMV could be differentiated from other CMV subgroup I isolates by RNA fingerprinting by arbitrarily primed polymerase chain reaction (RAP-PCR).

  • PDF

Rice Proteomics: A Functional Analysis of the Rice Genome and Applications (프로테옴 해석에 의한 벼 게놈 기능해석과 응용)

  • Woo, Sun-Hee;Kim, Hong-Sig;Song, Berm-Heun;Lee, Chul-Won;Park, Young-Mok;Jong, Seung-Keun;Cho, Yong-Gu
    • Journal of Plant Biotechnology
    • /
    • v.30 no.3
    • /
    • pp.281-291
    • /
    • 2003
  • In this review, we described the catalogues of the rice proteome which were constructed in our program, and functional characterization of some of these proteins was discussed. Mass-spectrometry is the most prevalent technique to rapidly identify a large number of proteome analysis. However, the conventional Western blotting/sequencing technique has been used in many laboratories. As a first step to efficiently construct protein cata-file in proteome analysis of major cereals, we have analyzed the N-terminal sequences of 100 rice embryo proteins and 70 wheat spike proteins separated by two-dimensional electrophoresis. Edman degradation revealed the N-terminal peptide sequences of only 31 rice proteins and 47 wheat proteins, suggesting that the rest of separated protein sports are N-terminally blocked. To efficiently determine the internal sequence of blocked proteins, we have developed a modified Cleveland peptide mapping method. Using this above method, the internal sequences of all blocked rice proteins(i, e., 69 proteins) were determined. Among these 100 rice proteins, thirty were proteins for which homologous sequence in the rice genome database could be identified. However, the rest of the proteins lacked homologous proteins. This appears to be consistent with the fact that about 45% of total rice cDNA have been deposited in the EMBL database. Also, the major proteins involved in the growth and development of rice can be identified using the proteome approach. Some of these proteins, including a calcium-binding protein that tuned out to be calreticulin, gibberellin-binding protein, which is ribulose-1.5-bisphosphate carboxylase/oxygense active in rice, and leginsulin-binding protein in soybean have functions in the signal transduction pathway. Proteomics is well suited not only to determine interaction between pairs of proteins, but also to identify multisubunit complexes. Currently, a protein-protein interaction database for plant proteins(http://genome.c.kanazawa-u.ac.jp/Y2H)could be a very useful tool for the plant research community. Also, the information thus obtained from the plant proteome would be helpful in predicting the function of the unknown proteins and would be useful be in the plant molecular breeding.

Comparative Analysis of the Community of Culturable Bacteria Associated with Sponges, Spirastrella abata and Spirastrella panis by 16S rDNA-RFLP (16S rDNA-RFLP에 의한 Spirastrella abata와 Spirastrella panis 해면에 서식하는 배양가능한 공생세균 군집의 비교)

  • Cho, Hyun-Hee;Park, Jin-Sook
    • Korean Journal of Microbiology
    • /
    • v.45 no.2
    • /
    • pp.155-162
    • /
    • 2009
  • A cultivation-based approach was employed to compare the culturable bacterial diversity associated with two phylogenetically closely related marine sponges, Spirastrella abata and Spirastrella panis, which have geologically overlapping distribution patterns. The bacteria associated with sponge were cultivated using MA medium supplemented with 3% sponge extracts. Community structures of the culturable bacteria of the two sponge species were analyzed with PCR-RFLP (restriction fragment length polymorphism) based on 16S rDNA sequences. The RFLP fingerprinting of 16S rDNA digested with HaeIII and MspI, revealed 24 independent RFLP types, in which 1-5 representative strains from each type were partially sequenced. The sequence analysis showed >98.4% similarity to known bacterial species in public databases. Overall, the microbial populations of two sponges investigated were found to be the members of the classes; Alphaproteobacteria, Gammaproteobacteria, Firmicutes, and Actinobacteria. The Alphaproteobacteria were predominant in the bacterial communities of the two sponges. Gammaproteobacteria represented 38.5% of bacterial community in S. abata. Whereas only 1.6% of this class was present in S. panis. Bacillus species were dominat in S. panis. Bacillus species were found to be 44.3% of bacterial species in S. panis, while they were only 9.7% in S. abata. It is interesting to note that Planococcus maritimus (8.1%, phylum Firmicutes) and Psychrobacter nivimaris (28.9%, phylum Gammaproteobacteria) were found only in S. abata. This result revealed that profiles of bacterial communities from the sponges with a close phylogenetic relationship were highly species-specific.

Culture characteristics and genetic relationship of morel mushroom (Morchella spp.) isolates from Korea and other countries (곰보버섯 (Morchella spp.) 수집균주의 배양적특성 및 유전적 유연관계)

  • Min, Gyeong-Jin;Park, Hye-sung;Lee, Eun-ji;Lee, Chan-Jung
    • Journal of Mushroom
    • /
    • v.18 no.1
    • /
    • pp.100-106
    • /
    • 2020
  • Eight morel mushroom species were collected from Korea and other countries. The culture characteristics, genetic relationships, and beta-glucan content of the strains were analyzed. The mycelia of Morchella species exhibited optimal growth when cultured in dark at 25 ℃ in media with pH 7. The mycelia had a distinctive mycelial scent and characteristically changed color, being white initially, and then turning dark yellow to dark brown as it grew. The mycelia were classified into five types based on morphology. The isolates were identified as Morchella conica, two M. sextelata, M. importuna, M. esculenta, and three M. crassipes, based on ITS-rDNA sequences. PCR polymorphisms were variably produced within Morchella spp. using Universal Fungal Fingerprinting Primers (UFPF) and classified into four groups at the intra and inter species level. The strains, KMCC04971 and KMCC04407, showed the same banding pattern as M. conica and M. sextelata, respectively; however, these results were different from those of ITS analysis. Glucan content analysis by strain showed that the KMCC 04973 strain of M. importuna had the highest alpha- and beta-glucan content, at 16.4 g and 33.1 g per 100 g, respectively.

Bacterial Community of Natural Dye Wastewater Treatment Facility (천연염색 폐수처리시설의 세균 군집)

  • Hwang, Yeoung Min;Kim, Dae Kuk;Lee, Ji Hee;Baik, Keun Sik;Park, Chul;Seong, Chi Nam
    • Journal of Life Science
    • /
    • v.24 no.4
    • /
    • pp.393-402
    • /
    • 2014
  • Culture-dependent and culture-independent denaturing gradient gel electrophoresis (DGGE) analyses were employed to investigate the bacterial community associated with a natural dye wastewater treatment facility. A total of 104 (influent water, 48 strains; aeration tank, 25; settling tank, 31) bacterial strains were isolated. Based on the 16S rRNA gene sequences comparison analysis, the isolates belonged to four phyla: Proteobacteria, Actinobacteria, Firmicutes, and Bacteriodetes. Seventeen DGGE bands representing dominant taxa in each sample were cloned and partially sequenced. The same four phyla were detected by DGGE fingerprinting. The most dominant taxon retrieved by both methods was the member of the phylum Proteobacteria with Alphaproteobacteria as the predominant class. The bacterial community associated with the natural dye wastewater treatment facility is composed of parasites of animals and plants, decomposers of polysaccharides and dyes, and producers of extracellular polysaccharides.

Present and prospect of plant metabolomics (식물대사체 연구의 현황과 전망)

  • Kim, Suk-Weon;Kwon, Yong-Kook;Kim, Jong-Hyun;Liu, Jang-R.
    • Journal of Plant Biotechnology
    • /
    • v.37 no.1
    • /
    • pp.12-24
    • /
    • 2010
  • Plant metabolomics is a research field for identifying all of the metabolites found in a certain plant cell, tissue, organ, or whole plant in a given time and conditions and for studying changes in metabolic profiling as time goes or conditions change. Metabolomics is one of the most recently developed omics for holistic approach to biology and is a kind of systems biology. Metabolomics or metabolite fingerprinting techniques usually involves collecting spectra of crude solvent extracts without purification and separation of pure compounds or not in standardized conditions. Therefore, that requires a high degree of reproducibility, which can be achieved by using a standardized method for sample preparation and data acquisition and analysis. In plant biology, metabolomics is applied for various research fields including rapid discrimination between plant species, cultivar and GM plants, metabolic evaluation of commercial food stocks and medicinal herbs, understanding various physiological, stress responses, and determination of gene functions. Recently, plant metabolomics is applied for characterization of gene function often in combination with transcriptomics by analyzing tagged mutants of the model plants of Arabidopsis and rice. The use of plant metabolomics combined by transcriptomics in functional genomics will be the challenge for the coming year. This review paper attempted to introduce current status and prospects of plant metabolomics research.