• Title/Summary/Keyword: finger-jointed wood

Search Result 16, Processing Time 0.021 seconds

Effect of Finger Profile on Static Bending Strength Performance of Finger-Jointed Wood

  • Park, Han-Min;Lee, Gyun-Pil;Kong, Tae-Suk;Ryu, Hyun-Soo;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.57-66
    • /
    • 2004
  • To study the efficient usage of small diameter logs and woods containing defects such as knots, slope of the grain and decay, six types of finger-jointed woods with various finger profiles were made of poplar, pine and oak with different density. We investigated the effect of finger profile on static bending strength performances of finger-jointed woods. The efficiency of bending MOE, MOR and deflection showed the highest value in poplar finger-jointed wood with the lowest density of three species, and the lowest value in oak finger-jointed wood with the highest density of three species. The values markedly decreased with increasing finger pitch for finger-jointed wood glued with polyvinyl acetate (PVAc) resin for all tested species, whereas for the finger-jointed wood glued with resorcinol-phenol formaldehyde (RPF) resin, the influence of finger pitch on the efficiency of MOE was not found in all tested species, and those on the efficiency of MOR and deflection indicated the same trend as finger-jointed wood glued with PVAc resin in the case of pine and oak finger-jointed wood with higher densities. It was found that the values tended to decrease with increasing density of species on the whole and the desirable finger pitches were L (6.8 mm) for poplar, M (4.4 mm) for pine and S (3.5 mm) for oak in a view of economy. For finger-jointed wood glued with PVAc resin, the fitness between a tip and a root width of a pair of fingers δ of 0.5 mm indicated the highest efficiency of MOE for all species. And, the influence of δ on MOR was only found in oak finger-jointed wood glued with RPF resin and the desirable δ value for oak was 0.1 mm. However, it was found that the influence of δ on the strength performance was very small.

Effect of Adhesives and Finger Pitches on Bending Creep Performances of Finger-Jointed Woods

  • Park, Han-Min;Oh, Seong-Won;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.5 s.133
    • /
    • pp.57-65
    • /
    • 2005
  • Following our previous reports for finger-jointed woods with various finger profiles studied for the efficient use of small diameter logs and woods containing various defects, twelve types of finger-jointed woods glued with three kinds of adhesives and with two sizes of finger pitches were made with sitka spruce and red pine. The effects of the adhesives and finger pitches on bending creep performances of finger-jointed woods were investigated. The shape of creep curves differed among the used adhesives and finger pitches of finger-jointed woods for both tested species. Their creep curves showed a linear behavior beyond about one hour, and the N values fitted to power law increased with increasing finger pitches. The initial deformation increased with increasing finger pitches, regardless of the tested species and kinds of adhesives, whereas the effect of finger pitches on the creep deformation was not clear. For finger-jointed woods glued with polyvinyl acetate (PVAc) resin, creep failure occurred in 106 hours after the load was applied. And the difference of the creep compliance between finger-jointed woods glued with resorcinol-phenol formaldehyde (RPF) resin and aqueous vinyl urethane (AVU) resin was small. The ratios for creep performances of finger-jointed woods glued with RPF resin and AVU resin versus solid wood were higher in creep deformation than initial deformation for both species, and the difference between both adhesives was not found. The relative creep decreased with increasing finger pitches, and the marked differences was not found between RPF resin and AVU resin.

Structural Performance of Finger-Jointed Lumber with Different Joint Configurations

  • Lee, Sang-Joon;Eom, Chang-Deuk;Kim, Kwang-Mo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.2
    • /
    • pp.172-178
    • /
    • 2011
  • Three different finger-jointed lumbers which have different geometric features and adhesives were manufactured and studied in this study. Larch and pitch pine lumbers with and without preservative treatment were used. Bending MOE was measured as the preliminary investigation for grouping the specimen. After the finger, bending MOE of two wood species without preservative treatment shows over 97% property of the control group. The tensile modulus also shows almost same property after the finger joint. And it is found out that the preservative treatment induce little effect on bending and tensile MOE. Based on this result, high performance of examined finger-jointed lumber can be found out. However, tensile strength decreased around 20% which would be induced by the crack along the root of the finger which is formed near the edge during manufacturing stage. And finger-jointed lumber with preservative treatment even shows higher decrement of the tensile strength with higher wooden part failure mode.

The Bending Performances of Sloped Finger-Jointed Rhus verniciflua (옻나무 경사핑거접합재의 휨강도성능)

  • 변희섭;이원희;홍병화
    • Journal of the Korea Furniture Society
    • /
    • v.10 no.1
    • /
    • pp.65-71
    • /
    • 1999
  • The bending performance of sloped finger-jointed Rhus verniciflua were tested in order to improve the strength properties of finger-joint. Sloped finger-cut pieces were jointed with three kinds of adhesives (polyvinyl acetate, polyvinyl-acryl acetate and oilic resin). The slope ratios of finger joints were 0, 1.0, 1.5, and 2.0. The MOE, MOR and deflection to maximum load in bending of sloped finger-joints and solid wood specimen were measured. The results were : 1) The efficiencies of MOE to finger and sloped finger-joints to the solid wood were almost same in the three kinds of adhesives(polyvinyl acetate, polyvinyl-acryl acetate and oilic urethane resin) and there were some effect of slope on the MOE in a sloped finger-joint for three kinds of resin adhesives. 2) There was the effect of slope on the MOR in sloped finger-joints in every kind of adhesive. The efficiencies of MOR in slope ratios of 0 and 2.0 ranged 65-79%, respectively. There was also a slight effect of the kinds of adhesives on the MOR. However, the efficiencies of deflection to the urethane resin adhesive were much less than those of polyvinyl acetate, polyvinyl-acryl acetate resin adhesives except the slope ratio of 0. 3) It might be impossible to estimate the bending stregth of sloped finger-jointed Rhus verniciflua by using MOE. The correlation coefficient(0.192) between MOE was very low and not significant at 5% level.

  • PDF

Effect of Humidity Conditions on Bending Creep Performance of Finger-Jointed Woods

  • Park, Han-Min;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.5
    • /
    • pp.7-15
    • /
    • 2007
  • To evaluate the durability of finger-jointed woods according to change of humidity conditions, four types of finger-jointed woods glued with different kinds of adhesives and finger pitches were made with Sitka spruce, and the effect of humidity conditions on creep performances was investigated. The shape of creep curves differed among humidity conditions, and the inclination of creep curves was greatest in 85%RH, and lowest in 65%RH. Their creep curves showed a linear behavior beyond approximately one hour, regardless of humidity conditions. The A values of the creep curves fitted to power law increased with increasing relative humidity, whereas the A' values were in order of 30 > 85 > 65%RH unlike the A values. The initial deformation increased with increasing relative humidity, whereas the creep deformation unlike the initial deformation was in order of 85 > 30 > 65%RH, and it was found that the creep deformation of finger-jointed woods indicated the smaller amount in air-dry moisture content rather than in a low moisture content less than 30%RH. Finger-jointed woods with 6.8 mm (L) pitch had the greater creep amount than in those with 4.4 mm (S) pitch in all humidity conditions. The difference of creep amount between both adhesives in all humidity conditions was small. Relative creep at 240 hr was greatest as 62.2~71.9% in 85%RH, and the values indicated 2.1~2.6 times that of 30%RH and 3.0~3.6 times that of 65%RH and were equal or slightly greater than that of solid spruce.

The Effects of Number and Location of Finger Joints on the Bending Strength of Glue Laminated Wood for Green Wood Building (핑거접합부의 수량 및 배치가 생태목조건축용 집성재의 휨강도에 미치는 영향)

  • So, Won-Tek
    • Journal of the Korea Furniture Society
    • /
    • v.18 no.1
    • /
    • pp.20-30
    • /
    • 2007
  • This experiment was carried out to investigate the effects of number and location of finger joints on the bending strength of glue-laminated lumbers. Urea resin adhesives were used in this experiment and the resin content was 70% for cold pressing. The lamina were edge-jointed and end-jointed. The specimen were composed of one or three layers. The obtained results are summarized as follows; The effects of finger joints on the decrease of bending strength of glue laminated woods were different according to the number and location of finger joints. The decrease of MOR was highest on the middle position of laminated woods. The effects of several arrangements of finger joints on the bending strength of glue laminated woods showed on Figure 7 and 8. The variance of thickness-laminating on the bending strength of glue laminated woods were larger than those of width-laminating.

  • PDF

Effect of Distance between Finger Tip and Root Width on Compressive Strength Performance of Finger-Jointed Timber (핑거공차가 핑거접합재의 압축강도 성능에 미치는 영향)

  • Ryu, Hyun-Soo;Ahn, Sang-Yeol;Park, Han-Min;Byeon, Hee-Seop;Kim, Jong-Man
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.66-73
    • /
    • 2004
  • Three species of Italian poplar (Populus euramericana), red pine (Pinus densiflora) and oriental oak (Quercus variabilis) were selected for this study. They were cut so that the distances between each of tips and roots for a pair of fingers were 0, 0.15, 0.30 and 0.45 mm. Poly vinyl acetate (PVAc) and resorcinol-phenol resin (RPR) were used for finger-jointing. Compressive test parallel to the grain was conducted for the finger-jointed specimens. The results were as follows: The efficiency of compressive Young's modulus of finger-jointed timber to solid wood indicated low values, whereas the efficiency of compressive strength indicated high values of more than 90% in all species, especially, it was found that those of red pine indicated markedly high values of more than 97%. The efficiency of compressive displacement of Italian poplar finger-jointed timber was 2 times higher than solid wood, and it was 1.2 and 1.3 times higher than solid woods in red pine and oriental oak, respectively. Also, it was found that 0, the distance between each tip and root for the fingers, indicated the highest efficiency of compressive strength performance in Italian poplar finger-jointed timber, and for red pine and oriental oak finger-jointed timbers, the distances of 0.15 and 0.30 were found to indicate the highest efficiency.

The Bending and Compression Strength Properties in Rhus verniciflua(I) (한국산 옻나무의 휨 및 종압축 강도적 성질(I))

  • Byeon, Hee-Seop;Shimada, Masahiro;Fushitani, Masami
    • Journal of the Korean Wood Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.95-99
    • /
    • 1996
  • The bending and compression strength properties of two types Rhus verniciflua specimens, which made of no heat-treated wood and heat-treated wood for urushiol extraction, were measured. The heat-treated specimens were finger-jointed with either resorcinol-phenol or polyurethane resin adhesives, and the vertical type bending strength property was also measured in these specimens. The results obtained are as follows ; 1. The correlation coefficient between the compression strength and specific gravity in the specimens of no heat-treated and heat-treated wood was high. However there was no difference in compression strength property as affected by heat treatment. 2 The correlation coefficient between the bending strength and specific gravity in the specimens of no heat-treated and heat-treated wood was also high. However, there was no difference in bending strength property as affected by heat treatment. 3 The bending test showed high correlation between modulus of elasticity and modulus of rupture for the specimens made of no heat-treated and heat-treated wood. However, there was no difference in bending strength property between the specimens made of heat-treated and no heat-treated wood. 4. The efficiencies of bending strength test on the finger-jointed specimens of heat-treated wood with resorcinol-phenol and polyurethane resin adhesives were 0.85, 0.81. respectively.

  • PDF

The Bending Strength Properties and Acoustic Emissions to the Difference of Finger Widths (핑거공차에 따른 휨강도 성능과 AE 특성)

  • Ryu, Hyun-Soo;Ahn, Sang-Yawl;Lee, Gyun-Pil;Park, Han-Min;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.84-91
    • /
    • 2003
  • In this study, the three species (Populus euramericana, Pinus densiflora and Quercus variabilis) were cut to difference (0, 0.15, 0.3, 0.45 mm) between the size of tip and that of root of the finger (DSTR) and jointed with poly vinyl acetate (PVA) and resorcinol-phenol resin (RPR). We described the relationship between the bending strength properties of finger DSTR and the acoustic emission (AE) generated during the bending test. The results were as follows: The AE generation time of finger-jointed specimens with RPR adhesive was earlier than that with PVA adhesive. The AE cumulative event count of finger-jointed specimens with RPR adhesive continuously increased with increasing load and the event count was much more than that with PVA adhesive. Also, the AE cumulative event count for resorcinol-phenol resin adhesive obtained from low load level was abundant. The AE wave in finger-jointed specimens with RPR adhesive could be detected in the below proportional limit load. Therefore, AE signals from bending test are useful for the estimation of strength in finger DSTR specimens.

Improvement of Bending Performances by Sloped Finger-Joint Method in Pinus densiflora S. et Z. (I) (경사핑거접합법에 의한 소나무재의 휨강도성능개량 (I))

  • Byeon, Hee-Seop;Park, Han-Min;Kim, Jong-Man
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.61-67
    • /
    • 1997
  • The bending performances of sloped finger-joints in Pinus densiflora S. et Z. were tested in order to improve the strength properties of finger-joint Sloped finger-cut pieces were jointed with four kinds of adhesives(resorcinol-phenol, oilic urethane, polyvinyl acetate, and polyvinyl-acryl acetate resin). The slope ratios of finger joints were 0, 0.5, 1.0, 2.0. The MOE, MOR and defletion to maximum load in bending of sloped finger-joints and solid wood specimen were measured. The results were: 1. The efficiencies of MOE to finger and sloped finger-joints were 82% or greater in every kind of adhesives except polyvinyl-acryl acetate resin adhesive and there were some effect of slope on the MOE in a sloped finger-joint for polyvinyl-acryl acetate and oilic urethane resin adhesives. 2. The effects of slope on the MOR to sloped finger-joints were showed in every kind of adhesive, because the efficiencies of MOR increased with increasing slope ratio in sloped finger-joints. The efficiencies of MOR to slope ratios of 0 and 2.0 ranged 43~65% and 76~82%, respectively. There was almost no effect of the kinds of adhesives on the MOR to the slope ratio of 2.0. 3. It was found impossible to estimate the bending strength of sloped finger-jointed Pinus densiflora S. et Z. by using MOE. The correlation coefficient(0.124) between MOE and MOR was very low and not significant at 5% level.

  • PDF