• Title/Summary/Keyword: finger joint

Search Result 202, Processing Time 0.021 seconds

The Effect of Finger Length on Bending Strength Properties in Laminated Wood (집성재의 정거길이가 휨강도성능에 미치는 영향)

  • 홍병화;변희섭;김종만
    • Journal of the Korea Furniture Society
    • /
    • v.11 no.2
    • /
    • pp.7-12
    • /
    • 2000
  • This paper describes the bending strength properties of laminated woods which had three kinds of specimens according to finger length-12, 4.5 mm and butt joint and the acoustic emissions (AEs) generated during the test. 3-ply laminated wood beams were tension side layers (lower layers) composed of one middle lamina and two side-jointed laminae, with one butt joint ($_1BJ$), one finger joint (12mm, $_1FJ_{12}$) or one finger joint (4.5mm, $_1FJ_{4.5}$) in the middle lamina of tension side layer. And 3-ply laminated wood beams were tension side layers (lower layers) also composed of one lamina, with one butt joint (BJ), one finger joint (12mm, $FJ_{12}$) or one finger joint (4.5mm, $FJ_{4.5}$/) in tension side layer. Cryptomelia pieces were cut for butt and two finger types and glued with resorcinol-phenol resin adhesive. The results were as follows It was not effective in the bending modulus of elasicity (MOE) with IFJL type and had no difference from finger length. The bending modulus of rupture (MOR) of laminated wood beams including finger joint was the same values as that including butt feint and had no difference from finger length. It was effective in MOE with FJL type and had no difference from finger length. The effect of finger joint on MOR was much higher than that of butt joint but had no difference from finger length. The AE generation time of IFJL type was earlier than that of the control wood and the number of AE count was much more than that of the control wood. However, the AE generation time of FJL type was earlier than that of the control wood and the number of U count was much fewer than that of the control wood.

  • PDF

Dynamic Analysis of Finger Joint Torque for Tip Pinch Task (두 점 집기 작업 시 손가락 관절토크의 역학적 해석)

  • Kim, Yoon-Jeong;Jeong, Gwang-Hun;Rhee, Kye-Han;Lee, Soo-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.6
    • /
    • pp.657-682
    • /
    • 2011
  • This paper presents the dynamic analysis on the joint torque of a finger for the tip pinch task. The dynamic model on finger movement was developed in order to predict the joint torques of an index finger, and the finger was assumed as a three-link planar manipulator. Analysis of the model revealed that the joint stiffness was one of the most important parameters affecting the joint torque. The stiffness of the finger joint was experimentally measured, and it was used in analyzing the finger joint torque required for performing the tip pinch task. The obtained joint torque for the tip pinch task will be used as the design requirements of the finger exoskeletal orthosis actuated by the polymer actuator whose allowable torque limit is relatively low compared to that of a mechanical actuator.

Safety Estimation of Repaired Finger Joint (교체된 Finger Joint의 안전성 평가)

  • Kim, Ji-Hoon;Han, Kyung-Bong;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.1
    • /
    • pp.241-254
    • /
    • 2002
  • Though there are many kinds of type in the expansion joint of bridges, Transflex joint was usually used from 1970's to 1980's. But it made of rubber is needed to exchange to new one often because of the breakage by wheel load. This study performed the safety estimation which is to exchange the transflex joint to finger joint kept the part of situ-cast-concrete. The standard of finger joint is same as that of transflex joint, we investigated the safety of finger joint with experimental results and FEM (Finite element method) analysis.

A Joint Motion Planning Based on a Bio-Mimetic Approach for Human-like Finger Motion

  • Kim Byoung-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.2
    • /
    • pp.217-226
    • /
    • 2006
  • Grasping and manipulation by hands can be considered as one of inevitable functions to achieve the performances desired in humanoid operations. When a humanoid robot manipulates an object by his hands, each finger should be well-controlled to accomplish a precise manipulation of the object grasped. So, the trajectory of each joint required for a precise finger motion is fundamentally necessary to be planned stably. In this sense, this paper proposes an effective joint motion planning method for humanoid fingers. The proposed method newly employs a bio-mimetic concept for joint motion planning. A suitable model that describes an interphalangeal coordination in a human finger is suggested and incorporated into the proposed joint motion planning method. The feature of the proposed method is illustrated by simulation results. As a result, the proposed method is useful for a facilitative finger motion. It can be applied to improve the control performance of humanoid fingers or prosthetic fingers.

Evaluation and Design for Joint Configurations Based on Kinematic Analysis (운동학에 기초한 로봇 손가락의 관절구조 평가 및 설계)

  • Hwang Chang-Soon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.176-187
    • /
    • 2005
  • This paper presents an evaluation of joint configurations of a robotic finger based on kinematic analysis. The evaluation is based on an assumption that the current control methods for the fingers require that the contact state specified by the motion planner be maintained during manipulation. Various finger-joint configurations have been evaluated for different contact motions. In the kinematic analysis, the surface of the manipulated object was represented by B-spline surface and the surface of the finger was represented by cylinders and a half ellipsoid. Three types of contact motion, namely, 1) pure rolling, 2) twist-roiling, and 3) slide-twist-rolling are assumed in this analysis. The finger-joint configuration best suited for manipulative motion is determined by the dimension of manipulation workspace. The evaluation has shown that the human-like fingers are suitable for maintaining twist-rolling and slide-twist-rolling but not for pure rolling. A finger with roll joint at its fingertip link, which is different from human fingers, proved to be better for pure rolling motion because it can accommodate sideway motions of the object. Several kinds of useful finger-joint configurations suited for manipulating objects by fingertip surface are proposed.

Correlation analysis of finger movements in dynamic hand grasping (잡기 동작에서 손가락 동작의 상관관계 분석)

  • Ryu, Tae-Beom;Yun, Myeong-Hwan
    • Journal of the Ergonomics Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.11-25
    • /
    • 2001
  • AS human movements have the inherent property of anticipating target and can be coordinated to realize a given schedule, finger movements have stereotyped patterns during hand grasping. Finger movements have been studied in the past to find out the coordination pattern of hand joint angular movement. These studies analyzed only a few finger joints for a limited number of hand postures. This study investigated fourteen joint angles during eight hand-grasping motions to analyze the angular correlations between finger joints and to suggest motion factors which represent hand grasping. Hand grasping motions including forward arm motion were examined in ten healthy volunteers. Eight objects were used to represent real hand grasping tasks. $CyberGlove^{TM}$ and $Fasreack^{TM}$ measured hand joint angles and wrist origin. Joint angle correlations between PIJ(proximal interphalangeal joint) and MPJ(metacarpophalangeal joint) at one finger, between neighboring PIJs and MPJs were four factors related to the fast phase of hand grasping motions and eight factors related to the slow phase of hand grasping motions.

  • PDF

An Interphalangeal Coordination-based Joint Motion Planning for Humanoid Fingers: Experimental Verification

  • Kim, Byoung-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.234-242
    • /
    • 2008
  • The purpose of this paper is to verify the practical effectiveness of an interphalangeal coordination-based joint motion planning method for humanoid finger operations. For the purpose, several experiments have been performed and comparative experimental results are shown. Through the experimental works, it is confirmed that according to the employed joint motion planning method, the joint configurations for a finger's trajectory can be planned stably or not, and consequently the actual joint torque command for controlling the finger can be made moderately or not. Finally, this paper analyzes that the interphalangeal coordination-based joint motion planning method is practically useful for implementing a stable finger manipulation. It is remarkably noted that the torque pattern by the method is well-balanced. Therefore, it is expected that the control performance of humanoid or prosthetic fingers can be enhanced by the method.

The Effect of Finger Joint Location on Bending Strength Properties (핑거접합부의 위치가 휨강도성능에 미치는 영향)

  • Won, Kyung-Rok;Hong, Nam-Euy;Ryu, Hyun-Soo;Park, Han-Min;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.4
    • /
    • pp.318-326
    • /
    • 2013
  • The effect of finger joint location and distance from joint to joint one another on 3 point mid-concentration bending strength properties was investigated in this experiment. Resorcinol-phenol formaldehyde (RPF) and aqueous vinyl urethane (AVU) was used to domestic Pinus densiflora Sieb. et Zucc and imported Picea sitchensis Carr. that have been cut to different width of 0.15 mm between finger tip and root width and the distance from loading point to finger joint was 0, 30, 40, 50, 60 mm. The effect was not found on the location and distance of finger joint for bending modulus of elasticity, while the efficiency of bending strength property increased proportionally as the location of finger joint from the load point and the distance between finger joint increased. No influence was shown by finger joint location and distance beyond 3 times of specimen thickness, since similar values were shown between the solid wood and no destruction occurred materials.

The Bending Performances of Sloped Finger-Jointed Rhus verniciflua (옻나무 경사핑거접합재의 휨강도성능)

  • 변희섭;이원희;홍병화
    • Journal of the Korea Furniture Society
    • /
    • v.10 no.1
    • /
    • pp.65-71
    • /
    • 1999
  • The bending performance of sloped finger-jointed Rhus verniciflua were tested in order to improve the strength properties of finger-joint. Sloped finger-cut pieces were jointed with three kinds of adhesives (polyvinyl acetate, polyvinyl-acryl acetate and oilic resin). The slope ratios of finger joints were 0, 1.0, 1.5, and 2.0. The MOE, MOR and deflection to maximum load in bending of sloped finger-joints and solid wood specimen were measured. The results were : 1) The efficiencies of MOE to finger and sloped finger-joints to the solid wood were almost same in the three kinds of adhesives(polyvinyl acetate, polyvinyl-acryl acetate and oilic urethane resin) and there were some effect of slope on the MOE in a sloped finger-joint for three kinds of resin adhesives. 2) There was the effect of slope on the MOR in sloped finger-joints in every kind of adhesive. The efficiencies of MOR in slope ratios of 0 and 2.0 ranged 65-79%, respectively. There was also a slight effect of the kinds of adhesives on the MOR. However, the efficiencies of deflection to the urethane resin adhesive were much less than those of polyvinyl acetate, polyvinyl-acryl acetate resin adhesives except the slope ratio of 0. 3) It might be impossible to estimate the bending stregth of sloped finger-jointed Rhus verniciflua by using MOE. The correlation coefficient(0.192) between MOE was very low and not significant at 5% level.

  • PDF

Second Toe to Finger Transfer in Traumatic Amputated Index (외상성 수지 절단에서 인지 재건을 위한 제 2 족지이식)

  • Lee, Kwang-Suk;Hahn, Seung-Beom;Lee, Seoung-Joon;Park, Sung-Joon
    • Archives of Reconstructive Microsurgery
    • /
    • v.11 no.1
    • /
    • pp.41-46
    • /
    • 2002
  • Purpose : To assess the clinical results of second toe-to-finger transfer in traumatic amputated index finger. Materials and Methods : For the clinical evaluation, we have analyzed 12 patients with ROM of finger joints, pinch power, static two point discrimination, life functional assessment, and patient's satisfaction. Results : In genral ROM was $54.4^{\circ}$ at MP joint, $17^{\circ}$ at PIP joint and $6.7^{\circ}$ at DIP joint. Pinch power was good in 3 cases, fair in 7 cases, and poor in 2 cases. Daily life activity and patient's acceptance were satisfactory. Conclusion : Although transfered toe function may be poorer than normal finger, the hand was restored to a useful, sensate and versatile functional unit.

  • PDF