• Title/Summary/Keyword: fine chemicals

Search Result 264, Processing Time 0.026 seconds

Simple Model of Bright-room Contrast Ratio Measurement System for Plasma Display Panels with Contrast Enhancement Film

  • Beom, Tae-Won;Park, Gi-Chan;Park, Jong-Rak;Kim, Young-Sik;Zhang, Jun;Song, Bu-Seup;Chun, Jong-Pil;Yoon, Ki-Cheol;Jang, Won-Gun
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.38-43
    • /
    • 2011
  • We have developed a simple model of a bright-room contrast ratio (BRCR) measurement system for plasma display panels (PDPs) adopting a contrast enhancement film (CEF) by using an illumination design tool. Only four model parameters were used, namely, total ambient illumination power delivered by fluorescent lamps, a panel scattering rate, illuminance of PDP white patterns, and the absorption coefficient of a color adjusting film. These parameters were determined by simple optical measurements and matching simulations. The proposed model was employed to predict the BRCR values of four different CEF samples, and the simulated ones were found to be in agreement with measured ones within about 10% relative-error.

Hydrogen Bonding Dynamics of Phenol-(H2O)2 Cluster in the Electronic Excited State: a DFT/TDDFT Study (전자 여기상태에서 phenol-(H2O)2 크러스터의 수소결합 동력학: DFT/TDDFT 연구)

  • Wang, Se;Hao, Ce;Wang, Dandan;Dong, Hong;Qiu, Jieshan
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.3
    • /
    • pp.385-391
    • /
    • 2011
  • The time-dependent density functional theory (TDDFT) method has been carried out to investigate the excitedstate hydrogen-bonding dynamics of phenol-$(H_2O)_2$ complex. The geometric structures and infrared (IR) spectra in ground state and different electronically excited states ($S_1$ and $T_1$) of the hydrogen-bonded complex have been calculated using the density functional theory (DFT) and TDDFT method. A ring of three hydrogen bonds is formed between phenol and two water molecules. We have demonstrated that the intermolecular hydrogen bond $O_1-H_2{\cdots}O_3-H$ of the three hydrogen bonds is strengthened in $S_1$ and $T_1$ states. In contrast, the hydrogen bond $O_5-H_6{\cdots}O_1-H$ is weakened in $S_1$ and $T_1$ states. These results are obtained by theoretically monitoring the changes of the bond lengths of the hydrogen bonds and hydrogen-bonding groups in different electronic states. The hydrogen bond $O_1-H_2{\cdots}O_3-H$ strengthening in both the $S_1$ and $T_1$ states is confirmed by the calculated stretching vibrational mode of O-H (phenol) being red-shifted upon photoexcitation. The hydrogen bond strengthening and weakening behavior in electronically excited states may exist in other ring structures of phenol-$(H_2O)_n$.

The Physical Properties Analysis of Epoxy Resins Incorporated with Toughening Agents (에폭시 강인성 향상 첨가제의 적용 및 물성 분석)

  • Kim, Daeyeon;Kim, Soonchoen;Park, Young-IL;Kim, Young Chul;Lim, Choong-Sun
    • Journal of Adhesion and Interface
    • /
    • v.16 no.3
    • /
    • pp.101-107
    • /
    • 2015
  • Epoxy resin toughening agents such as core/shell nanoparticles, CTBN epoxy, polyester polyols, and polyurethane have been widely used in order to compensate for the brittleness and improve the impact resistance of the epoxy resin. In this work, a few tougheners mentioned above were individually added into adhesive compositions to observe the effects of physical and mechanical properties. Both flexural strength and flexural modulus were measured with UTM while impact strength was analyzed with Izod impact tester. The obtained results showed that the addition of toughening agents afforded positive performance in terms of flexibility and impact resistance of the cured epoxy resin. Furthermore, DMA experiments suggested that the trends of storage modulus data of each epoxy resin composition coincided with the trends of flexural modulus data. FE-SEM images showed that toughening agents formed circled-shape particles when it was cured in epoxy resin composition at high temperature by phase separation. The existence of particles in the cured samples explains why epoxy resin with toughener has higher impact resistance.

Synthesis and Electrochemical Properties of LiFePO4 Cathode Material obtained by Electrospinning Method (전기방사법을 이용한 LiFePO4 양극 활물질의 합성 및 전기화학적 특성)

  • Lee, Seung-Byung;Cho, Seung-Hyun;Park, Sun-Il;Lee, Wan-Jin;Lee, Yun-Sung
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.4
    • /
    • pp.268-272
    • /
    • 2008
  • $LiFePO_4$ material was synthesized by electrospinning method to obtain optimal particle size($50{\sim}100\;nm$) without carbon coating or ball milling. This material showed an orthorthombic structure with Pnma space group without any impurities, such as FeP or $Fe_2P$, in the XRD pattern. The particle morphology and particle shape were observed by SEM analysis. Li/$LiFePO_4$ cell showed a high initial discharge capacity of 135 mAh/g, at current density of $0.1\;mA/cm^2$ with a cut-off voltage of 2.8 to 4.0V. This cell exhibited a perfect cycle performance over 99.9% cycle retention rate up to 50 cycles.

The Thermal Properties Analysis of the Mixtures Composed with Epoxy Resin and Amine Curing Agent (에폭시 수지/방향족 아민 경화물의 배합비 변화에 따른 열적 특성 분석)

  • Kim, Daeyeon;Kim, Soonchoen;Park, Young-Il;Kim, Young Chul;Lim, Choong-Sun
    • Journal of Adhesion and Interface
    • /
    • v.15 no.3
    • /
    • pp.100-108
    • /
    • 2014
  • In this work, a series of molar ratios composed with YD-128 and DDM were chosen based on the viscosity analysis. The mixtures of YD-128 and DDM with the different molar ratios were cured at $170^{\circ}C$ for 15 min followed by post cure at $190^{\circ}C$ for two hours. The thermal properties of the cured samples were investigated with DSC, TGA, DMA, and TMA. The conversion ratio of the mixtures of YD-128 and DDM (1 : 1.1) was calculated by dividing ${\Delta}H$ obtained from DSC experiments for each cured sample by ${\Delta}H$. The TGA data of the cured samples showed that the thermal stability and thermal degradation activation energy were proportional to the amount of DDM in the mixtures. However, the highest tan ${\delta}$, and the lowest thermal expansion data with DMA and TMA respectively were obtained from the stoichiometric mixture of YD-128 and DDM. Furthermore, the different ratio of mixtures were applied to test specimens to be cured at $170^{\circ}C$ to measure single lap shear strength with universal testing machine.

Preparation and Properties of $N^1,N^1,N^4,N^4$-Tetrakis(hydroxyethyl)cyclohexanetrans-1,4-dicarboxamide as a Crosslinker of Polyester Powder Coatings (폴리에스터계 분체도료용 경화제 $N^1,N^1,N^4,N^4$-Tetrakis(hydroxethyl) cyclohexane-trans-1,4-dicarboxamide의 제조 및 특성)

  • Jung, Hong-Ryun;Heo, Joon;Lee, Wan-Jin;Kim, Hyung Jin;Lim, Hyung Soo
    • Applied Chemistry for Engineering
    • /
    • v.20 no.2
    • /
    • pp.195-200
    • /
    • 2009
  • To develop a crosslinker for the polyester powder coatings, $N^1,N^1,N^4,N^4$-tetrakis(hydroxyethyl)cyclohexane-1,4-dicarboxamide (Cy-${\beta}-HAA$), incorporated with a cyclohexane ring within the main chain of commercial ${\beta}-hydroxyalkylamide$ (${\beta}-HAA$), was prepared from the amidation of dimethyl trans-1,4-cyclohexanedicarboxylate and diethanolamine in the presence of $NaOCH_3$, The structure of $Cy-{\beta}-HAA$ was confirmed by its NMR, FT-IR and ESI-MS spectra. $Cy-{\beta}-HAA$ was thermally more stable than ${\beta}-HAA$. When $Cy-{\beta}-HAA$ was used as a crosslinker for the polyester powder coatings, it provided the smooth coating surface and reduced the formation of pinholes in the coating surface with comparison with ${\beta}-HAA$.

Antibacterial Activity of Essential Oils on the Growth of Staphylococcus aureus and Measurement of their Binding Interaction Using Optical Biosensor

  • Chung, Kyong-Hwan;Yang, Ki-Sook;Kim, Jin;Kim, Jin-Chul;Lee, Ki-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.11
    • /
    • pp.1848-1855
    • /
    • 2007
  • Antibacterial activity of essential oils (Tea tree, Chamomile, Eucalyptus) on Staphylococcus aureus growth was evaluated as well as the essential oil-loaded alginate beads. The binding interactions between the cell and the essential oils were measured using an optical biosensor. The antibacterial activity of the essential oils to the cell was evaluated with their binding interaction and affinity. The antibacterial activity appeared in the order of Tea Tree>Chamomile>Eucalyptus, in comparison of the inhibition effects of the cell growth to the essential oils. The association rate constant and affinity of the cell binding on Tea Tree essential oil were $5.0{\times}10^{-13}\;ml/(CFU{\cdot}s)$ and $5.0{\times}10^5\;ml/CFU$, respectively. The affinity of the cell binding on Tea Tree was about twice higher than those on the other essential oils. It might be possible that an effective antibacterial activity of Tea Tree essential oil was derived from its strong adhesive ability to the cell, more so than those of the other essential oils.