• Title/Summary/Keyword: fine aggregate/aggregate ratio

Search Result 407, Processing Time 0.023 seconds

A Study on the Development of Forced Carbonation Reforming Technology for Recycled Aggregates (순환골재의 강제 탄산화 개질 기술 개발을 위한 기초적 연구)

  • Lim, Myung-Kwan;Park, Won-Jun;Lee, Huck;Kim, Do-Yun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.207-208
    • /
    • 2016
  • The most important things for the production of recycled aggregates are saving energy, suppressing the generation of by-product fine particles and sustaining the performance of concrete. As solutions, this study proposes this technology of improving the performance of recycled aggregates through forced carbonation.1) It is to stimulate and carbonate the bond paste part that causes the deterioration of recycled aggregates. Particularly, the purpose of this technology is to fill and chemically stabilize pores inside the bond paste, further improving the quality of recycled aggregates with a decreased absorption rate and an enhanced aggregate strength. Ultimately, it is possible to obtain a carbonation model, depending on the paste ratio and particle-size distribution of recycled aggregates. Moreover, by calculating the optimum carbonation period through the verification of this carbonation model, it is possible to examine how much the strength is improved by the reformation of recycled aggregated.

  • PDF

The Physical Properties of the Block Using Flame Resistant EPS Wastes (폐 난연성 EPS의 혼합조건에 따른 재생골재 블록의 물성에 관한 실험적 연구)

  • Cho, Kwang-Hyun;Kim, Ji-Hyun;Chung, Chul-Woo;Lee, Jae-Yong;Lee, Soo-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.152-153
    • /
    • 2013
  • Based on the Fire Service Act of mandatory provision, new buildings are strictly forced to use fire protection materials. Flame resistant EPS is one of those materials. Unlike conventional EPS that can be fused to make EPS ingot and be recycled for various purposes, flame resistant EPS waste cannot be recycled due to the presence of protective coating that is applied to increase the fire protection properties of EPS. A suitable alternative that can process large amount of flame resistant EPS wastes needs to be developed, and one of the possible alternative is to use them as construction materials. In this research, experiments were designed to observe whether the flame resistant EPS wastes can be utilized as partial replacements of fine aggregates in cement mortar. The replacement ratio of waste EPS was varied, and its effect on compressive strength and absorption capacity was investigated. According to the experimental results, both compressive strength and absorption capacity met the Korean Standard specification for cement bricks and blocks, indicating that flame resistant EPS wastes can be used for construction purposes.

  • PDF

Engineering Properties of Flowable Fills with Various Waste Materials

  • Lee, Kwan-Ho;Lee, Byung-Sik;Cho, Kyung-Rae
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.2
    • /
    • pp.105-110
    • /
    • 2008
  • Flowable fill is generally a mixture of sand, fly ash, a small amount of cement and water. Sand is the major component of most flowable fill with waste materials. Various materials, including two waste foundry sands(WFS), an anti-corrosive waste foundry sand and natural soil, were used as a fine aggregate in this study. Natural sea sand was used for comparison. The flow behavior, hardening characteristics, and ultimate strength behavior of flowable fill were investigated. The unconfined compression test necessary to sustain walkability as the fresh flowable fill hardens was determined and the strength at 28-days appeared to correlate well with the water-to-cement ratio. The strength parameters, like cohesion and internal friction angle, were determined for the samples prepared by different curing times. The creep test for settlement potential was conducted. The data presented show that by-product foundry sand, an anti-corrosive WFS, and natural soil can be successfully used in controlled low strength materials(CLSM), and it provides similar or better properties to that of CLSM containing natural sea sand.

Joint resource optimization for nonorthogonal multiple access-enhanced scalable video coding multicast in unmanned aerial vehicle-assisted radio-access networks

  • Ziyuan Tong;Hang Shen;Ning Shi;Tianjing Wang;Guangwei Bai
    • ETRI Journal
    • /
    • v.45 no.5
    • /
    • pp.874-886
    • /
    • 2023
  • A joint resource-optimization scheme is investigated for nonorthogonal multiple access (NOMA)-enhanced scalable video coding (SVC) multicast in unmanned aerial vehicle (UAV)-assisted radio-access networks (RANs). This scheme allows a ground base station and UAVs to simultaneously multicast successive video layers in SVC with successive interference cancellation in NOMA. A video quality-maximization problem is formulated as a mixed-integer nonlinear programming problem to determine the UAV deployment and association, RAN spectrum allocation for multicast groups, and UAV transmit power. The optimization problem is decoupled into the UAV deployment-association, spectrum-partition, and UAV transmit-power-control subproblems. A heuristic strategy is designed to determine the UAV deployment and association patterns. An upgraded knapsack algorithm is developed to solve spectrum partition, followed by fast UAV power fine-tuning to further boost the performance. The simulation results confirm that the proposed scheme improves the average peak signal-to-noise ratio, aggregate videoreception rate, and spectrum utilization over various baselines.

A Study on the Optimum Mix Proportion of the Mass Concrete Designed as Massive and Deep Structure

  • Kwon Yeong-Ho;Lee Hwa-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.2 s.86
    • /
    • pp.293-302
    • /
    • 2005
  • This study describes data from determination of the optimum mix proportion and site application of the mass concrete placed in bottom slab and side wall having a large depth and section as main structures of LNG in-ground tank. This concrete requires low heat hydration, excellent balance between workability and consistency because concreting work of LNG in-ground tank is usually classified by under-pumping, adaptation of longer vertical and horizontal pumping line than ordinary pumping condition. For this purpose, low heat Portland cement and lime stone powder as cementitious materials are selected and design factors including unit cement and water content, water-binder ratio, fine aggregate ratio and adiabatic temperature rising are tested in the laboratory and batch plant. As experimental results, the optimum unit cement and water content are selected under $270kg/m^3$ and $l55{\~}l60 kg/m^3$ separately to control adiabatic temperature rising below $30^{\circ}C$ and to improve properties of the fresh and hardened concrete. Also, considering test results of the confined water ratio($\beta$p) and deformable coefficient(Ep), $30\%$ of lime stone powder by cement weight is selected as the optimum replacement ratio. After mix proportions of 5cases are tested and compared the adiabatic temperature rising($Q^{\infty}$, r), tensile and compressive strength, modulus of elasticity, teases satisfied with the required performances are chosen as the optimum mix design proportions of the side wall and bottom slab concrete. $Q^{\infty}$ and r are proved smaller than those of another project. Before application in the site, properties of the fresh concrete and actual mixing time by its ampere load are checked in the batch plant. Based on the results of this study, the optimum mix proportions of the massive concrete are applied successfully to the bottom slab and side wall in LNG in-ground tank.

Chloride Diffusion Coefficient at Reference Time for High Performance Concrete for Bridge Pylons in Marine Environment (해상교량 주탑용 고성능 콘크리트의 기준재령 염소이온 확산계수)

  • Yoon, Chul-Soo;Kim, Ki-Hyun;Yang, Woo-Yong;Cha, Soo-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.4
    • /
    • pp.435-444
    • /
    • 2012
  • High performance concrete mixes are selected and corresponding test specimens are made for the study of chloride diffusion coefficient at reference time. The concrete mixes were same designs as those used in construction of bridges located in a marine environment. Mix design variables included binder type, water-to-binder ratio, mineral admixtures to total binder weight substitution ratio, fine aggregate source, chemical water reducer admixture type for high strength and high flowability, and target slump or slump flow. The test results showed that the diffusion coefficients at reference time varied significantly according to the type of mineral admixtures and their substitution ratios. A model for diffusion coefficient at reference time considering the type of mineral admixture and the substitution ratio was developed. Diffusion coefficients from the developed model were compared with those from literature review, a previous model, and additional test results. All of the comparisons verified that the developed model can reasonably predict diffusion coefficients and the application of the model to the durability design against chloride penetration is appropriate.

An Experimental Study on the Engineering Characteristics of Perforated Reinforced Concrete Beams containing Shells (패각을 사용한 철근콘크리트 유공보의 공학적 특성에 관한 연구)

  • Koo, Hae-Shik
    • KIEAE Journal
    • /
    • v.15 no.1
    • /
    • pp.139-146
    • /
    • 2015
  • This is an experimental study on the engineering characteristics of perforated reinforced concrete beams with shells. In the material matter of this study, the water cement ratio put 60%, the ratio of substitution of oyster shells to fine aggregate 30%. And in the structural matter, the form of opening put circle and square, the size of opening as the radius and the length of it changed from one to three times of the beam depth with a change presence and absence of reinforced steel around opening. All thirteen reinforced concrete beam tests composed one standard beam and twelve six beams with the circle and square opening were tested in shear strength under two points loading and compared and analyzed the characteristics of test beams under the same conditions one another. The results of the study showed as followed. 1) The initial crack load value of the opening test beams is similar the standard beam but the maximum load value decreased with increase in proportion of the opening size, in the square opening than the circle opening and in the absence than the presence of reinforced steel. 2) As the difference between the circle opening and the square opening beams is represented 2.17~9.8% in the maximum load value and the load capacity of the square opening suddenly decrease than it of the circle opening, it is judged because of the shortage of concrete section, the concentration of the stress in the corner of the square opening and material influence of shell substitution. 3) The failure figure such as the pattern of the crack and so on is represented brittle failure as the opening size is the bigger and the ratio of substitution is higher because of the lack material properties.

Properties of Polymer Cement Mortars under Combined Cures (복합양생에 의한 폴리머 시멘트 모르타르의 성질)

  • Jo, Young-Kug
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.5 s.95
    • /
    • pp.667-675
    • /
    • 2006
  • Concrete is much more easily damaged by various parameters than by the only one and performance reducing mechanism grows more complicated in that condition. In addition, the factors which really act in concrete structure tend to be activated in turn and the degradation of concrete is very rapidly progressed. The purpose of this study is to evaluate the properties of polymer cement mortars under combined cures. The polymer cement mortars are prepared with various polymer types, polymer-cement ratios and cement-fine aggregate ratio, and tested for compressive and flexural strengths, accelerated carbonation, chloride ion penetration and acid resistance test, and freezing-thawing test. The properties of polymer cement mortars under combined cures is discussed. From the test results, polymer cement mortars have superior strengths compared with plain cement mortar under combined cures. The strengths of polymer cement mortars are markedly increased at curing condition II and V, however strengths are not improved at curing condition I and IV irregardless of polymer types. The carbonation and chloride ion penetration depths of polymer cement mortars tend to decrease in curing conditions, III-C, IV-B, V-A order, and decrease with increasing polymer cement ratios. It is concluded that polymer cement ratio of 10 to 15% are considered optimum for the preparation of such polymer cement mortars.

A study of the fresh properties of Recycled ready-mixed soil materials (RRMSM)

  • Huang, Wen-Ling;Wang, Her-Yung;Chen, Jheng-Hung
    • Computers and Concrete
    • /
    • v.17 no.6
    • /
    • pp.787-799
    • /
    • 2016
  • Climate anomalies in recent years, numerous natural disasters caused by landslides and a large amount of entrained sands and stones in Taiwan have created significant disasters and greater difficulties in subsequent reconstruction. How to respond to these problems efficaciously is an important issue. In this study, the sands and stones were doped with recycled materials (waste LCD glass sand, slag powder), and material was mixed for recycled ready-mixed soil. The study is based on security and economic principles, using flowability test to determine the water-binder ratio (W/B=2.4, 2.6, and 2.8), a fixed soil: sand ratio of 6:4 and a soil: sand: glass ratio of 6:2:2 as fine aggregate. Slag (at concentrations of 0%, 20%, and 40%) replaced the cement. The following tests were conducted: flowability, initial setting time, unit weight, drop-weight and compressive strength. The results show that the slump values are 220 -290 mm, the slump flow values are 460 -1030 mm, and the tube flow values are 240-590 mm, all conforming to the objectives of the design. The initial setting times are 945-1695 min. The unit weight deviations are 0.1-0.6%. The three groups of mixtures conform to the specification, being below 7.6 cm in the drop-weight test. In the compressive strength test, the water-binder ratios for 2.4 are optimal ($13.78-17.84kgf/cm^2$). The results show that Recycled ready-mixed soil materials (RRMSM) possesses excellent flowability. The other properties, applied to backfill engineering, can effectively save costs and are conducive to environmental protection.

Proper Mixing Ratio for Securing Quality of Free-form Panel (비정형 패널의 형상 품질확보를 위한 적정 배합비 도출)

  • Kim, Min-Sik;Park, Chae-Wool;Kim, Ki-Hyuk;Do, Sung-Lok;Lee, Dong-Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.5
    • /
    • pp.449-456
    • /
    • 2019
  • Recent developments in architectural technologies and programs have enabled architects to think creatively and design free-form architecture. however, there are many problems in the production technology of FCP(Free-Form Concrete Panel). In particular, reduced accuracy due to lack of free-form panel production technology can lead to redesign of buildings as a result, problems such as an increase in construction cost and period. Therefore, this experiment aimed to compensate the decrease of the accuracy according to the displacement difference and to derive the proper mixing ratio for maintaining the shape during the free-form panel curing. In this study, molds were made using paraffin that is a recyclable phase change material. Concrete Panel is usually produced from Portland cement, dead burn magnesia, phosphate, borax and fine aggregate. In this study, four mixing ratios of FCP were selected after each material was blended to determine the proper blending ratio of the fluidity phase, the water absorption rate and the water content of the test piece. FCP was fabricated on the basis of the selected four compounding ratios and thickness and error rate were measured. Based on the error rate of the measured FCP, the quality standard was satisfied among the four compounding ratios.