• Title/Summary/Keyword: final relative luminous efficiency

Search Result 1, Processing Time 0.017 seconds

Research on Optimizing Luminosity Factor Through Color Filter $Y_{1-X}G_X$, $Y_{1-X}P_X$ ($Y_{1-X}G_X$, $Y_{1-X}P_X$ 칼라필터를 통한 시감도 최적화 연구)

  • Kim, YongGeun;Park, Hyun-Ju
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.14 no.1
    • /
    • pp.47-56
    • /
    • 2009
  • Purpose: To find optimized luminosity factor of color from light transmission filter. Methods: To make $Y_{1-x}G_{x}$, $Y_{1-x}P_{x}$ by using CR-39 compound within dipping method, mixing up Y(Yellow), G(green) and P(pink) for optimize eye sensitivity. Modeling for relative luminous efficiency(relative sensitivity) curves in Luminose transmission, it could be resolved by Multiplying sensitivity of eye within transmission rate of Lens ($P_f({\lambda}=T({\lambda}){\cdot}P({\lambda}).)$.). To evaluate Wavelength between 400~700 nm, relative luminous efficiency curve in Area and Height value is being used. Results: In color filter of $Y_{1-x}G_{x}$ position of x equals to 0.04, 0.1, 0.08, 0.12, 0.14, 0.5 at ${\beta}=S_1/S_0{\cdot}100$ each consist value of 76.1, 77.9, 80.7, 81.6, 80.2, 18.6 In color filter of $Y_{1-x}P_{x}$ position of x equals to 1.00, 0.2, 0.6, 0.8 at ${\beta}=S_1/S_0{\cdot}100$ each consist value of 74.3, 74.0, 70.5, 33.0 The result from experiment $Y_{1-x}P_{x}$ value less than $Y_{1-x}G_{x}$, from evaluating luminous efficiency curve and test was successfully optimized. Conclusions: Optimized relative luminous efficiency curve result have value of X=0.12-0.14 at $Y_{1-x}G_{x}$.

  • PDF