• Title/Summary/Keyword: fin width

Search Result 98, Processing Time 0.021 seconds

Fabrication of Multi-Fin-Gate GaN HEMTs Using Honeycomb Shaped Nano-Channel (벌집구조의 나노채널을 이용한 다중 Fin-Gate GaN 기반 HEMTs의 제조 공정)

  • Kim, Jeong Jin;Lim, Jong Won;Kang, Dong Min;Bae, Sung Bum;Cha, Ho Young;Yang, Jeon Wook;Lee, Hyeong Seok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.1
    • /
    • pp.16-20
    • /
    • 2020
  • In this study, a patterning method using self-aligned nanostructures was introduced to fabricate GaN-based fin-gate HEMTs with normally-off operation, as opposed to high-cost, low-productivity e-beam lithography. The honeycomb-shaped fin-gate channel width is approximately 40~50 nm, which is manufactured with a fine width using a proposed method to obtain sufficient fringing field effect. As a result, the threshold voltage of the fabricated device is 0.6 V, and the maximum normalized drain current and transconductance of Gm are 136.4 mA/mm and 99.4 mS/mm, respectively. The fabricated devices exhibit a smaller sub-threshold swing and higher Gm peak compared to conventional planar devices, due to the fin structure of the honeycomb channel.

Optimization of a 3-D Thermally Asymmetric Rectangular Fin

  • Gang, Hyeong-Seok
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.11
    • /
    • pp.1541-1547
    • /
    • 2001
  • The non-dimensional fin length for optimum heat loss from a thermally asymmetric rectangular fin is represented as a function of the ratio of the bottom surface Biot number to the top surface Biot number, fin tip surface Biot number and the non-dimensional fin width. Optimum heat loss is taken as 98% of the maximum heat loss. For this analysis, three dimensional separation of variables method is used. Also, the relation between the ratio of the bottom surface Biot number to the top surface Biot number and the ratio of the right surface Biot number to the left surface Biot number is presented.

  • PDF

Trend and issues of the bulk FinFET (벌크 FinFET의 기술 동향 및 이슈)

  • Lee, Jong-Ho;Choi, Kyu-Bong
    • Vacuum Magazine
    • /
    • v.3 no.1
    • /
    • pp.16-21
    • /
    • 2016
  • FinFETs are able to be scaled down to 22 nm and beyond while suppressing effectively short channel effect, and have superior performance compared to 2-dimensional (2-D) MOSFETs. Bulk FinFETs are built on bulk Si wafers which have less defect density and lower cost than SOI(Silicon-On-Insulator) wafers. In contrast to SOI FinFETs, bulk FinFETs have no floating body effect and better heat transfer rate to the substrate while keeping nearly the same scalability. The bulk FinFET has been developed at 14 nm technology node, and applied in mass production of AP and CPU since 2015. In the development of the bulk FinFETs at 10 nm and beyond, self-heating effects (SHE) is becoming important. Accurate control of device geometry and threshold voltage between devices is also important. The random telegraph noise (RTN) would be problematic in scaled FinFET which has narrow fin width and small fin height.

Analysis of a Modified Plate Fin for Enhanced Performance of a Plate Fin Heat Exchanger (평판 핀 열교환기의 성능 향상을 위한 변형된 평판 핀에 대한 해석)

  • 김윤하;강형석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.84-91
    • /
    • 2001
  • Comparison between performance of a plate fin and that of a modified plate fin is investigated as a function of the position, the non-dimensional width and height of wings as well as the non-dimensional fin length using a two-dimensional separation of variables method. The ratio of the incremental rate of heat loss to that of the area of a modified plate fin is also presented as a function of the height of wings. The modified plate fin is made by attaching the wings to upper and lower sides of a plate fin. One of the results shows that performance of a modified plate fin is more improved as the wings approach left (higher) thermal reservoir.

  • PDF

An Experimental study on Heat Characteristics of Horizontal Tubes with Fin in Fluidized Bed Combustor (유동층 연소로 내에서 수평 휜 전열관의 열전달 특성에 관한 실험적 연구)

  • Kang, Hyung-Soo;Chung, Tae-Yong
    • Journal of the Korean Society of Combustion
    • /
    • v.1 no.1
    • /
    • pp.19-29
    • /
    • 1996
  • This study is to investigate the characteristics of heat transfer of a horizontal tube, with radial fins of various configuration, immersed in a high temperature fluidized bed. The experimental heat transfer variation is compared with that of a smooth tube. The finned tubes and smooth tube, with outside and inside diameter of 48.6mm and 30.6mm, are made of steel tubes. The depth of the fin is 5mm, the rake angles of fin are $25^{\circ},\;35^{\circ},\;45^{\circ}$ and the widthes of fin for each rake angle are 0mm, 1mm, 2mm and 3mm. A bed temperature is fixed at $880\;{\pm}\;10^{\circ}C$. A granular refractory(silica sand) is used as a bed material with mean particle diameters of 1.22mm and 1.54mm. The maximum heat transfer coefficient is achieved with the rake angle of $25^{\circ}$ and the width of 0mm for the mean particle size 1.22mm. The coefficient is 2.14 times larger than that for a smooth tube. The rake angle for the maximum heat transfer coefficient depends on the particle size of bed material. Also the transfer coefficient decreases as the width of fin increases.

  • PDF

Performance Analysis on the Trapezoidal Fins having Different Slope for Enhanced Heat Exchange (열교환 향상을 위한 경사각이 다른 사다리꼴 휜에 대한 성능해석)

  • 강형석;윤세창
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.3
    • /
    • pp.16-24
    • /
    • 1999
  • Performance of the trapezoidal fins having different upper side slope is investigated by the three dimensional analytic method. It is shown that one equation can be used to analyse the trapezoidal fins having different upper side slope by adjusting the slope factor only. The performances for these fins are represented as a function of the non-dimensional fin length, fin width, Biot number and the slope factor when the remaining variables are fixed arbitrarily. One of the results is that the fin effectiveness increases as Biot number, the non-dimensional fin width and the slope factor decrease and as the non-dimensional fin length increases in the case of Bi $\leq$ 0.1 but the trend of the fin shape effect on the effectiveness is somewhat irregular for higher Biot number(i.e. Bi = 0.3).

  • PDF

Design Optimization of Silicon-based Junctionless Fin-type Field-Effect Transistors for Low Standby Power Technology

  • Seo, Jae Hwa;Yuan, Heng;Kang, In Man
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1497-1502
    • /
    • 2013
  • Recently, the junctionless (JL) transistors realized by a single-type doping process have attracted attention instead of the conventional metal-oxide-semiconductor field-effect transistors (MOSFET). The JL transistor can overcome MOSFET's problems such as the thermal budget and short-channel effect. Thus, the JL transistor is considered as great alternative device for a next generation low standby power silicon system. In this paper, the JL FinFET was simulated with a three dimensional (3D) technology computer-aided design (TCAD) simulator and optimized for DC characteristics according to device dimension and doping concentration. The design variables were the fin width ($W_{fin}$), fin height ($H_{fin}$), and doping concentration ($D_{ch}$). After the optimization of DC characteristics, RF characteristics of JL FinFET were also extracted.

Shape Optimization of a Plate-Fin Type Heat Sink with Triangular-Shaped Vortex Generator

  • Park, Kyoungwoo;Park, Dong-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.9
    • /
    • pp.1590-1603
    • /
    • 2004
  • In this study the optimization of plate-fin type heat sink with vortex generator for the thermal stability is performed numerically. The optimum solutions in the heat sink are obtained when the temperature rise and the pressure drop are minimized simultaneously. Thermal performance of heat sink is influenced by the heat sink shape such as the base-part fin width, lower-part fin width, and basement thickness. To acquire the optimal design variables automatically, CFD and mathematical optimization are integrated. The flow and thermal fields are predicted using the finite volume method. The optimization is carried out by means of the sequential quadratic programming (SQP) method which is widely used for the constrained nonlinear optimization problem. The results show that the optimal design variables are as follows; B$_1$=2.584 mm, B$_2$=1.741 mm, and t=7.914 mm when the temperature rise is less than 40 K. Comparing with the initial design, the temperature rise is reduced by 4.2 K, while the pressure drop is increased by 9.43 Pa. The relationship between the pressure drop and the temperature rise is also presented to select the heat sink shape for the designers.

Three-Dimensional Selective Oxidation Fin Channel MOSFET Based on Bulk Silicon Wafer (벌크 실리콘 기판을 이용한 삼차원 선택적 산화 방식의 핀 채널 MOSFET)

  • Cho, Young-Kyun;Nam, Jae-Won
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.11
    • /
    • pp.159-165
    • /
    • 2021
  • A fin channel with a fin width of 20 nm and a gradually increased source/drain extension regions are fabricated on a bulk silicon wafer by using a three-dimensional selective oxidation. The detailed process steps to fabricate the proposed fin channel are explained. We are demonstrating their preliminary characteristics and properties compared with those of the conventional fin field effect transistor device (FinFET) and the bulk FinFET device via three-dimensional device simulation. Compared to control devices, the three-dimensional selective oxidation fin channel MOSFET shows a higher linear transconductance, larger drive current, and lower series resistance with nearly the same scaling-down characteristics.

Impacts of Trapezoidal Fin of 20-nm Double-Gate FinFET on the Electrical Characteristics of Circuits

  • Ryu, Myunghwan;Kim, Youngmin
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.4
    • /
    • pp.462-470
    • /
    • 2015
  • In this study, we analyze the impacts of the trapezoidal fin shape of a double-gate FinFET on the electrical characteristics of circuits. The trapezoidal nature of a fin body is generated by varying the angle of the sidewall of the FinFET. A technology computer-aided-design (TCAD) simulation shows that the on-state current increases, and the capacitance becomes larger, as the bottom fin width increases. Several circuit performance metrics for both digital and analog circuits, such as the fan-out 4 (FO4) delay, ring oscillator (RO) frequency, and cut-off frequency, are evaluated with mixed-mode simulations using the 3D TCAD tool. The trapezoidal nature of the FinFET results in different effects on the driving current and gate capacitance. As a result, the propagation delay of an inverter decreases as the angle increases because of the higher on-current, and the FO4 speed and RO frequency increase as the angle increases but decrease for wider angles because of the higher impact on the capacitance rather than the driving strength. Finally, the simulation reveals that the trapezoidal angle range from $10^{\circ}$ to $20^{\circ}$ is a good tradeoff between larger on-current and higher capacitance for an optimum trapezoidal FinFET shape.