• Title/Summary/Keyword: filtrstion

Search Result 1, Processing Time 0.013 seconds

NATURAL FILTRATIONS OF SOME PLETHYSMS

  • Kim, Young-Hie;Ko, Hyoung J.;Lee, Kyung-Ae
    • Bulletin of the Korean Mathematical Society
    • /
    • v.37 no.1
    • /
    • pp.191-207
    • /
    • 2000
  • Let R be a ommutative ring with unity and F a finite free R-module. For a nonnegative integer r, there exists a natural filtration of$S_r(S_2F)$ such that its associated graded module is isomorphic to $\Sigma_{{\lambda}{\epsilon}{\tau}_r}\;L_{\lambda}F$, where ${\Gamma}_{\gamma}$ set of partitions such that $$\mid${\lambda}$\mid$-2r,{{\widetilde}{\lambda}}-{{\widetilde}{\lambda}}_1},...,{{\widetilde}{\lambda}}_k},\;each\;{{\widetilde}{\lambda}}_t}$,is even. We call such filtrations plethysm formulas. We extend the above plethysm formula to the version of chain complexes. By plethysm formula we mean the composition of universally free functors. $Let{\emptyset}:G->F$ be a morphism of finite free R-modules. We construct the natural decomposition of $S_{r}(S_2{\emptyset})$,up to filtrations, whose associated graded complex is isomorphic to ${\Sigma}_{{\lambda}{\varepsilon}{\tau}}_r}\;L_{\lambda}{\emptyset}$.

  • PDF