• Title/Summary/Keyword: filtration flux

Search Result 265, Processing Time 0.023 seconds

Micro-Filtration Performance of Metal Membrane md Fouling Reduction by Intermittent Ozonation (금속 막의 정밀 여과 특성 및 간헐적 오존 처리에 의한 막 오염 저감)

  • 김종오;정종태
    • Membrane Journal
    • /
    • v.14 no.1
    • /
    • pp.66-74
    • /
    • 2004
  • Total resistance of membrane in a micro-filtration system using a metal membrane was mainly attributed to the permeate resistance of cake layer($R_c$), which was formed by deposited particles from the physico-chemical interactions of solids on membrane surface. Intermittent back ozonation was highly effective than the air backwashing for fouling reduction. As far the operational effect, under same ozone injection, the increase of gas flow-rate was more favorable than the increase of injection time far the recovery of permeation flux. As the filtration time was longer, the effect of flux recovery by intermittent back-ozonation decreased. Therefore, it is preferable to operate membrane cleaning before the foulant is consolidated on membrane surface.

RESEARCH PAPERS : THE KINETICS ON THE BIOLOGICAL REACTION IN MEMBRANE BIOREACTOR (MBR) WITH GRAVITATIONAL AND TRANSVERSAL FILTRATION

  • Jang, Nam-J.;Hwang, Moon-H.;Yeo, Young-H.;Shim, Wang-G.;S. Vigneswaran;Kim, In-S.
    • Environmental Engineering Research
    • /
    • v.9 no.5
    • /
    • pp.238-247
    • /
    • 2004
  • The objective of this study was to develop kinetic model for the MBR and investigate kinetic characteristics of the gravitational flow transverse direction MBR system. Kinetic model was derived by mass balance of substratc and biomass combined with empirical membranc filtration rerm for the MBR. To find kinctic values, permeale flux and COD removal were analyzed through the laboratory, MBR operation as different solids retention times. Permeate flux was ranged 2.5-5.0 LMH (L/m$^2$/hr) as sludge characteristics in each run. Although the soluble COD in the bioreactor was changed, the effluent COD was stable as average 99% removal rate during the experimental periods. Y$_g$ of this MBR system was higher than those of cross-flow MBR processes. The kinetics of this MBR showed that smaller k, larger b, and larger K$_s$ values than the conventional activated sludge process. These results indicated that substrate was used for cell maintenance rather than growth in this MBR system.

Characteristic of alumina-based microfiltration ceramic membrane

  • Hyunsoo, Kim;Oyunbileg, Purev;Eunji, Myung;Kanghee, Cho;Nagchoul, Choi
    • Membrane and Water Treatment
    • /
    • v.14 no.1
    • /
    • pp.11-18
    • /
    • 2023
  • This work addresses the development of microfiltration ceramic membrane from alumina using extrusion method. The membranes were sintered at different temperatures ranging between 1000 and 1300℃. The alumina was characterized with thermogravimetric analysis, particle size distribution, X-ray diffraction, Fourier transform infrared spectrometer and scanning electron microscope analysis. Subsequently, the effect of sintering temperature on the membrane properties such as porosity, flexural strength, and pure water permeability was investigated and optimized for the sintering temperature. It is observed that with increasing sintering temperature, the porosity of the membranes decreases and the flexural strength, and pure water permeability of the membranes increase. The uncoated and coated membranes were compared at constant flux mode of filtration. Under the turbidity solution recirculation alone at 100 NTU, trans-membrane pressure (TMP) of uncoated membrane remained constant when the filtration flux was below 121 Lm-2 h -1 , while the coated membrane was 111 Lm-2 h -1 . Although suction pressure increased more rapidly at higher turbidity, coated membrane filtration showed better removal efficiency of the turbidity.

Analysis of Membrane Fouling Reduction by Natural Convection Instability Flow in Membrane Filtration of Protein Solution Using Blocking Filtration Model (막힘여과 모델에 의한 단백질 용액의 막여과에서 자연대류 불안정 흐름의 막오염 제어 효과 해석)

  • Kim, Ye-Ji;Youm, Kyung-Ho
    • Membrane Journal
    • /
    • v.29 no.1
    • /
    • pp.18-29
    • /
    • 2019
  • The dead-end ultrafiltration (UF) of BSA protein solution was performed to investigate the defouling effects of natural convection instability flow (NCIF) induced in membrane module. The permeate fluxes were measured according to the inclined angles ($0{\sim}180^{\circ}$) of membrane module with respect to gravity, and analyzed using the blocking filtration model. NCIF are more induced as the inclined angles increased from $0^{\circ}$ to $180^{\circ}$, and the induced NCIF enhances flux. Comparing the fluxes at $0^{\circ}$ inclined angle (no NCIF induction) and $180^{\circ}$ (maximum NCIF induction), the flux enhancements by NCIF induction are increased about 5 times in the short-term UF operation (2 hours) and about 17 times in the long-term operation (20 hours). As applying the blocking filtration model, it is more suitable to analyze the flux results by using the intermediate blocking model in the early times of UF operation within 15 minutes and then thereafter times by using the cake filtration model. NCIF induced at $180^{\circ}$ inclined angle reduces the intermediate blocking fouling at about 67% in the early times operation and thereafter the cake layer fouling at about 99.9%. The main defouling mechanism of NCIF induced in the membrane module is suppress the formation of protein cake layer.

Fouling characteristics of humic substances on tight polysulfone-based ultrafiltration membrane

  • Ariono, Danu;Aryanti, Putu T.P.;Wardani, Anita K.;Wenten, I.G.
    • Membrane and Water Treatment
    • /
    • v.9 no.5
    • /
    • pp.353-361
    • /
    • 2018
  • Fouling characteristics of humic substances on tight ultrafiltration (UF) membrane have been investigated. The tight UF membrane was prepared by blending polysulfone (PSf) in N.N-dimethylacetamide (DMAc) with 25%wt of Polyethylene glycol (PEG400) and 4%wt of acetone. Fouling characteristic of the modified PSf membrane was observed during peat water filtration in different trans-membrane pressure (TMP). It was found that the acetone modified membrane provided 13% increase in TMP during five hours of peat water filtration, where a stable flux was reached within 150 minutes. Meanwhile, the increase of TMP from 10 psig to 30 psig resulted in a fouling resistance enhancement of 60%. Furthermore, based on the fouling analysis, fouling mechanism at the first phase of filtration was attributed to intermediate blocking while the second phase was cake formation.

Design of Dead-end Membrane Module with Increased Permeate Flux by Natural Convection Instability Flow (자연대류 불안정 흐름에 의해 투과량을 증가시킨 전량여과 막모듈의 설계)

  • Kim, Gi-Jun;Youm, Kyung-Ho
    • Membrane Journal
    • /
    • v.29 no.3
    • /
    • pp.147-154
    • /
    • 2019
  • The permeate flux increments of a natural convection instability flow (NCIF) caused by the change of inclined angles ($0{\sim}180^{\circ}$) to gravity of the commercial membrane module were tested in the dead-end membrane filtration of BSA protein solution. The NCIF are more generated as the inclined angle increased from $0^{\circ}$ to $180^{\circ}$, and the occurred NCIF enhances permeate flux. However, the commercial module can only generate NCIF by completely removing the air gap in module. Since the custom design module designed in this study is permeated in a crossward direction ($90^{\circ}$), NCIF is always generated even if there is the air gap in module. The results of membrane filtration of BSA and dextran solutions using a custom design module showed that the flux in the crossward direction is increased to about 3.8 times for BSA solution and 1.8 times for dextran solution after two hours of operation due to the occurrence of NCIF. Also, NCIF generation is continued during 20 hours filtration of BSA solution, increasing the permeate flux to about 7.5 times. Since the custom design module with a permeation in the crossward direction and NCIF is always generated within the module, so it is possible to expect an increase in permeate flux due to the suppression of fouling formation, and thus to be utilized as a superb dead-end membrane module.

Optimization of In-line Coagulation/MF Process Using On-line Streaming Potential Measurement (On-line streaming potential 측정에 의한 in-line 약품응집/정밀여과 공정의 최적화)

  • Oh, Jeong-Ik;Lee, Seockheon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.4
    • /
    • pp.522-528
    • /
    • 2004
  • Microfiltration with in-line rapid coagulation for drinking water production was examined. The in-line rapid coagulation was conducted using newly developed mixing device instantaneous flash mixer. The flux decline during membrane filtration was monitored with coagulant dosage varied. Flux decline was minimized at 1.1mg/L of coagulant dosage, where streaming potential of coagulated water was near zero. The optimum dosage for the process control was explained by dimensionless distance (${\kappa}{\times}a$) of particle pairs, obtained from electrophoresis parameter describing electrostatic repulsion relative to Van der Waals energy between particle pairs in the pre-coagulated water.

Permeation Characteristics of Wastewater Containing Si Fine Particles through Ultrafiltration

  • Park, Ho-Sang;Park, Young-Tae;Lee, Seok-Ki
    • Korean Membrane Journal
    • /
    • v.5 no.1
    • /
    • pp.31-35
    • /
    • 2003
  • The permeation characteristics of the wastewater containing Si fine particles were examined by ultrafiltration using the polyolefin tubular membrane module. Flux with time was due to the growth of Si cake deposited on the membrane surface and the pore plugging by fine particles. The rate of flux decline in the initial stage increased with the trans-membrane pressure. The pore blocking resistance was the dominant resistance at the initial period of filtration and the cake resistance began to dominate with the initial pore blocking resistance. The larger pores compared with the fine particles, the more the membrane pores could be blocked by the fine particles. Before and after treatment, the distribution of particle size was shifted toward to the left. Then, the average size of fine particles in the permeate was 20 nm.

Evaluation of flux stabilisation using Bio-UF membrane filter on KZN Rivers, South Africa

  • Thoola, Maipato I.;Rathilal, Sudesh;Pillay, Lingam V.
    • Membrane and Water Treatment
    • /
    • v.7 no.4
    • /
    • pp.313-325
    • /
    • 2016
  • South Africa recognises piped water as the main source of safe drinking water supply. Remote areas do not have access to this resource and they rely solely on surface water for survival, which exposes them to waterborne diseases. Interim point of use solutions are not practiced due to their laboriousness and alteration of the taste. Bio-ultra low pressure driven membrane system has been noted to be able to produce stable fluxes after one week of operation; however, there is limited literature on South African waters. This study was conducted on three rivers namely; Umgeni, Umbilo and Tugela. Three laboratory systems were setup to evaluate the performance of the technology in terms of producing stable fluxes and water that is compliant with the WHO 2008 drinking water guideline with regards to turbidity, total coliforms and E.coli. The obtained flux rate trends were similar to those noted in literature where they are referred to as stable fluxes. However, when further comparing the obtained fluxes to the normal dead-end filtration curve, it was noted that both the Umbilo and Tugela Rivers responded similarly to a normal dead-end filtration curve. The Umgeni River was noted to produce flux rates which were higher than those obtainable under normal dead-end. It can be concluded that there was no stabilisation of flux noted. However, feed water with low E.coli and turbidity concentrations enhances the flux rates. The technology was noted to produce water of less than 1 NTU and 100% removal efficiency for E.coli and total coliforms.

Response of Ultrafiltration Flux to Periodic Oscillations in Transmembrane Pressure Gradient (압력구배의 주기적 변화에 따른 한외여과 Flux의 변화)

  • 서창우;이은규
    • KSBB Journal
    • /
    • v.14 no.2
    • /
    • pp.230-234
    • /
    • 1999
  • To improve the crossflow untrafiltration flux, we applied periodic oscillations in transmembrane pressure gradient in order to promote fluid turbulence by inducing repeated compression and relaxation of the cake/gel layer. The oscillatory forms used were square-, sine-, triangle-wave, and pumping interruption. The permeate flux profiles were mathematically simulated and compared with the experimental data. The result showed the periodic pumping interruption most effectively improved the overall flux by up to about 32%. Enough pumping off-time, at least on the order of tens of seconds, was needed to allow the solutes in the layer to diffuse back to the bulk phase. It was better to start the oscillations earlier before the layer was fully established. The square-wave oscillation yielded about 11% increase, which was particularly pronounced in the later part of the filtration. Either the amplitude or the period of the oscillations resulted little influence on flux.actate ester, and lactate ester produced in esterification reaction was distilled simultaneously with hydrolysis reaction into lactic acid. When the yields of lactic acid recovered by batch reactive distillations with various alcohols were compared, the yield of lactic acid was increased as the volatility of lactate ester was increased. In this batch reactive distillation, because the mixtures condensed in partial condensor were flown to reboiler through distillation column, the recovery yield of lactic acid was affected by operation temperature of partial condensor. Hydrolysis reaction into lactic acid in distillation column rarelyoccurred because of short retention time of lactate ester and water. Lactate ester was reacted into lactic acid in reboiler.

  • PDF