• Title/Summary/Keyword: filtration efficiency

Search Result 513, Processing Time 0.031 seconds

Investigation of Treatment Efficiency for Advanced Processes of Water Treatment Plants in Korea (국내 정수장 고도정수처리 공정에서 공정별 처리효율 조사)

  • Mun, Sung-Min;Choi, Suing-Il;Sohn, Jin-Sik;Yoon, Je-Yong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.3
    • /
    • pp.323-329
    • /
    • 2005
  • Advanced processes such as ozonation or activated carbon filtration (ACF) in water treatment plants have been used in Korea since 1994. At present, seventeen drinking water treatment plants are currently operating. This survey compares the treatment performance of advanced processes in eight plants which have comparable water quality data. The three parameters (DOC, $UV_{254}$, and $KMnO_4$ consumption) of water quality were selected as an indicator of treatment efficiency. The treatment efficiency of ozonation and ACF processes was found to vary with large deviations in each plant. Treatment efficiency of DOC, $UV_{254}$, and $KMnO_4$ consumption by post ozonation ranged from 3 to 11%, 6 to 33%, and 12 to 28% respectively. On the other hand, for ACF, treatment efficiency of DOC, $UV_{254}$, and $KMnO_4$ consumption ranged from 7 to 38%, 8 to 48%, and 16 to 66% respectively. These large deviations indicate the advanced processes of water treatment plants to be further optimized.

Performance characteristics of simultaneous removal equipment for paint particulate matter and VOCs generated from a spraying paint booth (입자상물질과 VOCs 동시제거 실증장치에서 자동차 페인트 부스 발생 paint aerosol과 VOCs의 동시제거 성능 특성)

  • Lee, Jae-Rang;Hasolli, Naim;Jeon, Seong-Min;Lee, Kang-San;Kim, Kwang-Deuk;Park, Young-Ok
    • Particle and aerosol research
    • /
    • v.12 no.4
    • /
    • pp.161-168
    • /
    • 2016
  • The purpose of this study is to determine the performance characteristics of the paint particulate and volatile organic compounds(VOCs) simultaneous removal from the spraying paint booth in the laboratory and real site by sticky paint particulate and VOCs simultaneous removal demonstration unit. The sticky paint particulate and VOCs simultaneous removal unit is composed of the horizontal type pleated filter modules and the zig-zag type granular activated carbon packing modules. The test conditions at the laboratory are $50.15g/m^3$ of average paint aerosol concentration and 300 ppm of VOCs concentration which were same as the working conditions of spraying paint booth in the real site. But, the demonstration conditions at the real site are varied according to the working condition of spraying paint booth for the kind of passenger car bodies. The test results at the laboratory obtained that 99% of total particulate collection efficiency at 0.62 m/min of filtration velocity and 84% at 1.77 m/min of filtration velocity. The VOCs removal efficiencies are 97% at $3500hr^{-1}$ of gas hour space velocity and 59% at $10,000hr^{-1}$ of gas hour space velocity. In the real site test, the average removal efficiency of PM10 was measured to be 99.65%, the average removal efficiency of PM2.5 was 99.38%, the average removal efficiency of PM1 was 98.52%, and the average removal efficiency of VOCs was 89%.

Evaluation of the performance and the removal characteristics of natural organic matter in a modular mobile water production system (모듈형 이동식 물생산 시스템 운전 성능 및 자연 유기물 제거 거동 평가)

  • Hwang, Yuhoon;Yang, Philje;Song, Jimin;Hong, Minji;Choi, Changhyung;Ko, Seokoh;Kim, Dogun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.1
    • /
    • pp.55-65
    • /
    • 2018
  • It is necessary to develop a mobile water production system in order to provide stable water supply in case of disasters such as floods or earthquakes. In this study, we developed a modular mobile water production system capable of producing water for various uses such as domestic water and drinking water while improving applicability in various raw water sources. The water production system consists of three stages of filtration (sand filtration - activated carbon filtration - pressure filtration) to produce domestic water and an additional reverse osmosis process to produce drinking water. In laboratory and field experiments, the domestic water production system showed excellent treatment efficiency for particulate matter, but showed limitations in the treatment of dissolved substances such as dissolved organic matter. In addition, ultraviolet irradiation was considered as additional disinfection step, because it does not form precipitates of manganese oxides after disinfection. Reverse osmosis process was added to increase the removal efficiency of dissolved substances and the treated water satisfied drinking water quality standards. Fluorescence analysis of dissolved organic matter showed that the fulvic acid-like substances in raw water was successfully removed in the reverse osmosis process. The mobile water production system developed in this study is expected to be used not only in water supply in case of disaster, but also widely used in islands and rural area.

Filtration Characteristics of Polymeric Porous Materials Composed of Polypropylene and Polyethylene (Polypropylene과 Polyethylene으로 구성된 기공성 고분자 소재의 여과특성)

  • Ahn, Byeng-Gil;Oh, Kyeong-Keun;Choi, Ung-Soo;Kwon, Oh-Kwan
    • Clean Technology
    • /
    • v.4 no.2
    • /
    • pp.32-40
    • /
    • 1998
  • The polymeric porous materials which consist of polypropylene(PP) and polyethylene(PE) powder were prepared to apply to the air purification systems by extrusion sintering method. SEM analysis showed that a composite polymeric porous structure made up of PP and PE was obtained, where PE was melted and adhered to PP because the melting temperature of PE was lower than that of PP. The filtration characteristics and mechanical properties of polymeric porous materials were investigated by varying the head die temperature of the extruder, extrusion velocity, and the melt index and quantity of PE. The filtration efficiency was proportional to the quantity of PE but inversely proportional to the melt index of PE. The polymeric porous materials composed of PP and PE, which was made by extrusion sintering method, was found to be suitable for the filter element of the air purification system.

  • PDF

A Study of Dewatering and Filtration on Woven Geotextile Tube (직포 지오텍스타일 튜브의 여과와 탈수에 대한 연구)

  • Kim, Tae-Hyung;Jung, Soo-Jung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.2
    • /
    • pp.31-37
    • /
    • 2006
  • The purposes of this paper are to study the use possibility of geotextile tubes for dewatering of high water content sludges and sediments and to evaluate affecting factors on dewatering. To do this, pressure filtration tests are conducted on four high water content materials with two geotextiles under two filtration pressures. Based on the test results, although woven geotextile tubes are not satisfied the soil retention criteria used in filter design commonly, a great portion of fines are retained by filter cake formation on geotextile tube's upstream side, but also after formation of filter cake, the permeability drops sharply. Higher filtration pressure tends to increase dewatering rate, but has very little effect on filtration efficiency. Dewatering capacity is affected by several factors which are related to the geotextile, but the property of sludge appears to be the dominant control factor for dewatering efficiency.

  • PDF

Alum Floc Attachment in Granular Media Filtration (입상여과에서 액반플럭의 부착)

  • Kim, Jinkeun
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.625-630
    • /
    • 2004
  • Granular media filtration is used almost universally as the last particle removal process in conventional water treatment plants. Therefore, superb particle removal efficiency is needed during this process to ensure a high quality of drinking water. However, every particle can not be removed during granular media filtration. Besides the pattern of particle attachment is different depending on physicochemical aspects of particles and suspension. Filtration experiments were performed in a laboratory-scale filter using spherical glass beads with a diameter of 0.55 mm as collectors. A single type of particle suspension (Min-U-Sil 5) and alum coagulation was used to destabilize particles. The operating conditions were similar to those of standard media filtration practice: a filtration velocity of 5 m/h. More favorable particles, i.e., particles with smaller surface charge, were well attached to the collectors especially during the early stage of filtration when zeta potential of particles and collectors are both negative. This selective attachment of the lower charged particles caused the zeta potential distribution (ZPD) of the effluent to move to a more negative range. On the other hand, the ZPDs of the effluent moved from more positive to less positive when the surface charge of particles was positive and this result was thought to be caused by ion transfer between particles and collectors.

An Electrostatic Diesel Particulate Filtration System for Removal of Fine Particulate Matters from Marine Diesel Engines (선박 디젤엔진 배출 미세먼지 저감을 위한 정전 여과 매연 집진기 개발에 관한 연구)

  • Younghun Kim;Gunhee Lee;Kee-Jung Hong;Yong-Jin Kim;Hak-Jun Kim;Inyong Park;Bangwoo Han
    • Particle and aerosol research
    • /
    • v.19 no.4
    • /
    • pp.101-110
    • /
    • 2023
  • In order to reduce particulate matters (PM) from marine diesel engines, we developed novel electrostatic diesel particulate matter filtration system. Electrostatic diesel particulate filtration (DPF) system consists of electrostatic charger and filtration part. The electrostatic charger and filtration part are composed of a metal discharge electrode and a metal fiber filter (porosity: 68.1-86.1%), respectively. In the electrostatic charger part, diesel soot particles are reduced by electrostatic force. The filtration part after electrostatic charger part reduces diesel soot particles through inertial and diffusion forces. The filtration efficiency of electrostatic DPF system was examined through the experiments using engine dynamometer system (300 kW) and ship (200 kW). The PM reduction efficiencies due to inertial and electrostatic forces showed about 70-75% and 80-90%, respectively, according to the RPM of the engine. The differential pressure of the electrostatic DPF system applied to the ship was about 1-9 mbar, which was less than the allowable differential pressure for ship engines in South Korea (100 mbar). The results show that the electrostatic DPF system is suitable for application to the PM reduction emitted from ships.

Experimental determination of design parameters for filtration trench using phosphorus removal granular materials (인 제거 입상소재를 적용한 여과수로 설계인자의 실험적 결정)

  • Jang, Yeoju;Lim, Hyunman;Jung, Jinhong;Ahn, Kwangho;Chang, Hyangyoun;Park, Nari;Kim, Weonjae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.1
    • /
    • pp.9-16
    • /
    • 2019
  • The algal blooms in stagnant streams and lakes have caused many problems. Excessive algae leads to disturbance of ecosystem and overload of water treatment processes. Therefore, phosphorus(P), source of algal blooms, should be controlled. In this study, a filtration trench has been developed to convert dissolved phosphorus into hydroxyapatite(HAP) so that it could be crystallized on the surface of 'phosphorus removal granular material'; and residual particulate phosphorus could be removed by additional precipitation and filtration. The front and rear parts of filtration trench consisted of 'phosphorus removal granular material contact bed' and 'limestone filtration bed', respectively. As a result of the column test using phosphorus removal granular material and limestone serially, $PO_4-P$ was removed more than 90% when EBCT(empty bed contact time) of the contact bed was over 20 minutes; and T-P represented 60% of removal efficiency when total EBCT was over 1.5 hours. The results of column tests to figure out the sedimentation characteristics showed that more than 90% of particulate phosphorus could be removed within 24 hours. It was necessary to optimize the filtration part in order to increase removal efficiency of T-P additionally. Also, it was confirmed through the simulation of Visual MINTEQ that most of particulate phosphorus in the column tests is the form of HAP. Based on the results of the study, it could be suggested that the design parameters are over 0.5 hour of EBCT for phosphorus removal granular material contact bed and over 1.5 hours of EBCT for limestone filtration bed.

Removal Performance of Sticky Paint Aerosol Control System Generated from Small Scale Car Paint Overspray Booth (소형 자동차 페인트 도장부스에서 발생하는 점착성 paint aerosol 처리장치에서 제거성능)

  • Lee, Jae-Rang;Hasolli, Naim;Jeon, Seong-Min;Lee, Kang-San;Sohn, Jong-Ryeul;Park, Young-Ok
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.1
    • /
    • pp.54-62
    • /
    • 2015
  • Small scale paint overspray booths are being operated nationwidely, for repair of passenger car body parts. paint aerosols are emitted from the paint overspray booth in operations. In paint overspray booth operations without ventilation system and air pollutants collection unit, it may land on nearby equipment. In this study a removal of sticky paint aerosol for application of the small-scale overspray paint booth. it's cause the surface of filter bag from generated sticky paint aerosol. To remove adhesion of paint aerosol the agglomerating agents are injected and mixed with sticky paint aerosols prior to reach the filter bag. The paint spray rate was set as $10{\pm}5g/min$ from air-atomized spray guns in the spray booth, injection rate of agglomerating was $10{\pm}5g/min$ in the mixing chamber. The filtration velocity including air pollutants varied from 0.2 m/min to 0.4 m/min. Bag cleaning air pressure was set as $5.0kg_f/min$ for detaching dust cake from surface of filter bag. Bag cleaning interval at the filtration velocity of 0.2 m/min was around 3 times longer than that of the 0.4 m/min. The residual pressure drop maintained highest value at the highest filtration velocity. Fractional efficiency of 99.952%~99.971% was possible to maintain for the particle size of 2.5 microns. Total collection efficiency at the filtration velocity of 0.2 m/min was 99.42%. During this study we could confirm high collection efficiency and long cleaning intervals for the test with filtration velocity of 0.2 m/min indicating an optimal value for the given dimensions of the test unit and test operating conditions.