• Title/Summary/Keyword: filtering mixing sand

Search Result 2, Processing Time 0.016 seconds

A Study of the Utilization of Feldspathic Sand as a Fortified Functional Filtering Material for Water Purification (고 기능성 수질 정화 여과재로서의 장석질 모래 활용연구)

  • 고상모;송민섭;홍석정
    • Journal of the Mineralogical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.283-293
    • /
    • 2003
  • Domestic water treatment plants operate the rapid and slow filtering system using the filtering sands. Most of them are composed of beach sands, which have less sorption capacity of heavy metals as well as organic contaminants. Therefore, the development of fortified functional filtering materials with high removal capacity of organic and inorganic contaminants is needed to prevent the unexpected load of contaminated source water. This study aims to test the hydrochemical change and the removing capacity of heavy metals such as Cd, Cu, and Pb on the Jumunjin sand, feldspathic sand(weathering product of Jecheon granite), feldspathic mixing sand I(feldspathic sand mixed with 10 wt% zeolite), and feldspathic mixing sand II (feldspathic sand mixed with 20 wt% zeolite). Feldspathic mixing sand I and II showed the eruption of higher amounts of cations and anions compared with the Jumunjin sand and feldspathic sand. They also showed higher eruption of Si, Ca, $SO_4$ ions than that of Al, $NO_3$, Fe, K, Mg, and P. Feldspathic mixing sand II caused higher eruption of some cations of Na, Ca, Al than feldspathic mixing sud I, which is the result controlled by the dissolution of zeolite. Jumunjin sand and feldspathic sand showed very weak sorption of Cd, Cu and Pb. In contrast to this, feldspathic mixing sand I and II showed the high sorption and removal capacity of the increasing order of Cd, Cu and Pb. Feldspathic mixing sand II including 20% zeolite showed a fortified removal capacity of some heavy metals. Therefore, feldspathic mixing sand mixed with some contents of zeolite could be used as the fortified filtering materials for the water filtering and purification in the domestic water treatment plants.

Feasibility Tests for Treating Fine Suspended Solids from Mining Drainage, using Various Media by Column Methods - A Case from H Coal Mine (광산배수 부유물질 저감을 위한 다양한 여과 매질의 특성 및 적용성 평가 - H 석탄광산 배수)

  • Lee, Sanghoon;Kwon, HyukHyun;Oh, Minah;Lee, Jai-Young;Kim, DukMin
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.6
    • /
    • pp.112-118
    • /
    • 2012
  • Fine suspended solids from mine drainage draw attentions due to their potential adverse influences on the water quality, such as increasing turbidity and degrading aesthetic landscape. Currently, sand filter beds are adapted in some mine drainage treating systems. However, more efficient system is in demand, as the existing sand beds reveal some problems, such as frequent maintenance intervals. Various filtering mediums including fly ash, mine tailing aggregates and the sand were tested for improving the current system, using column experimental set-up. Mine drainage samples were collected from the current treating systems in the abandoned H coal mine. The experiment was run for 7 days. Suspended solids recorded as 100.9 mg/L and the value exceeds the current standard, 30 mg/L. Sand was proved to still be the optimum medium for the fine suspended solids, compared to fly ash and fly ash + sand. Mine tailing aggregates were placed at the exit of the columns, substituting gravels. The tailing aggregates is made by mine tailings and clay. Sand bed filters can also be improved by mixing granular activated carbon, which was found to be economical and efficient in the batch experiment, conducted at the same time.