• Title/Summary/Keyword: film density-thickness relation

Search Result 9, Processing Time 0.023 seconds

A Study on Quantitative Thickness Evaluation Using Film Density Variation in Film Radiography (Film Radiography에서 농도차를 이용한 정량적 두께 평가에 관한 연구)

  • Lee, Sung-Sik;Lee, Jeong-Ki;Kim, Young-H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.5
    • /
    • pp.356-362
    • /
    • 1999
  • Based on the assumption that film density increases exponentially with exposure in the industrial radiographic film. an equation representing the characteristic curves of industrial radiographic films and a new density-thickness relation are suggested. The accuracy and reliability of the suggested relation has been tested using radiographs of a carbon steel step wedge with known thickness variation by polychromatic X-ray and ${\gamma}$-ray ($Ir^{192}$). The experimental results were well agreed to the proposed relation in the range of film densities from 1.0 to 3.5 and it was more accurate than the conventional relation. It is also found that ${\gamma}$-ray is more effective in this purpose than polychromatic X-ray, which results in variation of effective linear absorption coefficient due to beam hardening effect as thickness increases. Therefore using the equation and experimentally determined parameters the quantitative evaluation of thickness variation is possible and it can be used to evaluate the depth of local corrosion of pressure vessels in plants.

  • PDF

Dielectric Breakdown Behavior of Anodic Oxide Films Formed on Pure Aluminum in Sulfuric Acid and Oxalic Acid Electrolytes

  • Hien Van Pham;Duyoung Kwon;Juseok Kim;Sungmo Moon
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.3
    • /
    • pp.169-179
    • /
    • 2023
  • This work studies dielectric breakdown behavior of AAO (anodic aluminum oxide) films formed on pure aluminum at a constant current density in 5 ~ 20 vol.% sulfuric acid (SA) and 2 ~ 8 wt.% oxalic acid (OA) solutions. It was observed that dielectric breakdown voltage of AAO film with the same thickness increased with increasing concentration of both SA and OA solutions up to 15 vol.% and 6 wt.%, respectively, above which it decreased slightly. The dielectric breakdown resistance of the OA films appeared to be superior to that of SA films. After dielectric breakdown test, cracks and a hole were observed. The crack length increased with increasing SA film thickness but it did not increase with increasing OA film thickness. To explain the reason why shorter cracks formed on the OA films than the SA films after dielectric breakdown test, the generation of tensile stresses at the oxide/metal interface was discussed in relation to porosity of AAO films obtained from cross-sectional morphologies.

Characterization of Thin Liquid Films Using Molecular Dynamics Simulation

  • Lee, Jaeil;Park, Seungho;Ohmyoung Kwon;Park, Young-Ki;Lee, Joon-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.11
    • /
    • pp.1477-1484
    • /
    • 2002
  • Various characteristics of a thin liquid film in its vapor-phase are investigated using the molecular dynamics technique. Local distributions of the temperature, density, normal and tangential pressure components, and stress are calculated for various film thicknesses and temperature levels. Distributions of local stresses change considerably with respect to film thicknesses, and interracial regions on both sides of the film start to overlap with each other as the film becomes thinner. Integration of the local stresses, i.e., the surface tension, however, does not vary much regardless of the interfacial overlap. The minimum thickness of a liquid film before rupturing is estimated with respect to the calculation domain sizes and is compared with a simple theoretical relation.

The Electrical Properties of Thin Film Mixed With LLDPE and EVA (LLDPE와 EVA를 혼합한 박막의 전기적 특성)

  • Lee, Jong-Pil;Shin, Hyun-Taek;Cho, Kyung-Soon;Lee, Chung-Ho;Lee, Yoon-Joo;Hong, Jin-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1667-1670
    • /
    • 1999
  • In this paper, We are studied the electrical properties of thin film mixed with LLDPE and EVA, and the specimen is selected as Low Linear Density Polyethylene and Ethylene Vinyl Acetate produced by mixture ratio of 50:50, 60:40, 70:30 and 80:20. (thickness $100[{\mu}m],\;70[{\mu}m],\;50[{\mu}m],\;30[{\mu}m]$). As the electrical properties. one is electrical conduction characteristics of the due to mixture ratio of linear low density polyethylene (LLDPE) and ethylene vinyl acetate(EVA), the other is AC breakdown of specimens due to variation of the thickness. From the result of XRD, it is confirmed that specimen of 80 : 20 and virgin LLDPE have high peaks at $2\theta=21.4[^{\circ}]$ and the peak by the contribution of amorphous at $2{\theta}=19.5[^{\circ}]$ is constant with no relation to mixture ratio, but virgin EVA is somewhat lower.

  • PDF

Changes of Camber on Lamination Conditions in alumina/Tungsten Cofiring Multilayer Package (알루미나/텅스텐 동시소성에 의한 다층 팩키지 제조시 적층조건에 따른 camber의 변화)

  • 성재석;구기덕;윤종광;이상진;박정현
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.6
    • /
    • pp.601-610
    • /
    • 1997
  • In cofiring of multilayered alumina with tungsten, the change of camber with lamination condition was experimented and the effect of sintering shrinkage of alumina and tungsten was investigated. From the exact measurement of sintering shrinkage of tungsten thick film, as lamination pressure increased, the sintering shrinkage of alumina decreased but that of tungsten thick film was not changed. So it was though that the main factor which induced the sintering shrinkage difference between ceramics and metal with lamination condition was the change of sintering shrinkage of ceramics. In case of high lamination pressure, high green sheet density, the cofired specimen showed low camber due to low shrinkage difference between alumina and tungsten and there was a linear relation between camber and shrinkage difference. It was found that this shrinkage difference could change the thickness of tungsten film and the microstructure within via hole during cofiring.

  • PDF

Hard Anodizing Treatment in Malic Acid Bath mixed with Oxalic Acid (말릭산과 수산혼합욕에서 경질양극 산화처리)

  • Jeong, Yong-Soo;Chang, Do-Yon;Kwon, Sik-Chol
    • Journal of the Korean institute of surface engineering
    • /
    • v.17 no.3
    • /
    • pp.78-86
    • /
    • 1984
  • Hard anodic oxide film was investigated formed on pure aluminium with various temperature (30$^{\circ}-60^{\circ}C$), current densities (1.5-3.0A/$dm^2$) and concentrations(3-15g/l) of oxalic acid in 0.5M malic acid bath. The resulting characteristic of the anodic oxide film obtained were summarized as follows in the view point of physical and mechanical properties in relation with the above process variables. 1. The film thickness increased with oxalic acid concentration and bath temperature, while the reversed phenomena were obtained at a high concentration of oxalic acid and high temperature due to the severe dissolution of the anodic oxide film. 2. The hardness and the abrasion resistance were improved by lowering the addition of oxalic acid and the bath temperature. This feature was directly dependent on the porosity formed on the anodic oxide film. 3. The maximum hardness of anodic oxide film showed Hv 579 in the temperature of 30$^{\circ}C$ with the current density, 2.5A/$dm^2$ in the 0.5M malic acid bath mixed with 5g/l oxalic acid.

  • PDF

Gamma-ray Dosimetry with Thin Plastic Film

  • Yoo, Young-Soo;Ro, Seung-Gy
    • Nuclear Engineering and Technology
    • /
    • v.5 no.3
    • /
    • pp.223-233
    • /
    • 1973
  • Thirty two different kinds of domestic plastic films for use in measuring high gamma-ray dose have been collected and their dosimetric characteristics investigated with the help of a Co-60 gamma radiation source. Among them a rigid polyvinyl chloride(PVC) film of 0.06mm in thickness which is manufactured by Lucky Chemical Co., Korea, seem to be the most suitable one for this purpose. The relation between optical density at 3100$\AA$ and radiation exposure in this PVC film was linear in the range of 0.6$\times$10$^{6}$ R to 1.3$\times$10$^{7}$ R, and also the film showed a good reproducibility within 9% under the standard experimental condition. The effect of absorbed dose, oxygen content of surrounding atmosphere and irradiation temperature have also been studied for this film. It appeared to have a good property in the dosimetrical point of view.

  • PDF

OBSERV ATION OF MICRO-STRUCTURE AND OPTICAL PROPERTISE OF TITANIUM DIOXIDE THIN FILMS USING OPTICAL MMEHODS

  • Kim, S.Y.;Kim, H.J.
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.6
    • /
    • pp.788-796
    • /
    • 1996
  • $TiO_2$ films prepared by RF magnetron sputtering, electron beam evaporation, ion assisted deposition (IAD) and sol-gel method are prepared on c-Si substrate and vitreous silica substrate respectively. From the transmission spectra of $TiO_2$ films on vitreous silica substrate in the spectral region from 190 nm to 900 nm, k($\lambda$) of $TiO_2$ is obtained. Using k($\lambda$) in the interband transition region the coefficients of the quantum mechanical dispersion relation of an amorphous $TiO_2$ and hence n($\lambda$) including the optically opaque region of above fundamental transition energy are obtained. The spectroscopic ellipsometry spectra of $TiO_2$ films in the spectral region of 1.5-5.0eV are model analyzed to get the film packing density variation versus i) substrate material, ii) film thickness and iii) film growth technique. The complex refractive index change of these $TiO_2$ films versus water condensation is also studied. Film micro-structures by SE modelling results are compared with those by atomic force microscopy images and X-ray diffraction data.

  • PDF

Study on Validity of 1-D Spherical Model on Aqua-plasma Power Estimation With Electrode Structure

  • Yun, Seong-Yeong;Jang, Yun-Chang;Kim, Gon-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.74-74
    • /
    • 2010
  • The aqua-plasma is the non-thermal plasma in electrical conductive electrolyte by generates the vapor film layer on the immersed metal electrode surface. This plasma can generate the hydroxyl radical by dissociate the water molecule with the plasma electron. To develop the plasma discharge device for high efficiency in the hydroxyl radical generation, proper model for estimation of plasma power is necessary. In this work, the 1-D spherical model was developed, considering temperature dependence material constants. The relation between the plasma power and hydroxyl generation was also studied by the comparison between the optical emission intensity from the hydroxyl radical using monochromator and estimated plasma power. First, the thickness of vapor layer thickness was estimated using the Navier-Stokes fluid equation in order to calculate the discharge E-field inside vapor layer. Using the E-field magnitude and power balance on the plasma generation, it was possible to estimate the plasma power. The plasma power was assumed to uniformly fill the vapor layer and the temperature of vapor layer was fixed in the boiling temperature of electrolyte, 375K. In the experiment, the aqua-plasma was discharged in the saline by applied the voltage on the bipolar electrode. The range of applied voltage was 234 to 280V-rms in the frequency of 380 kHz. Two type electrodes were produced with two ${\Phi}0.2$ tungsten. The plasma power was estimated from the V-I signal from the two high voltage probes and current probe. The estimated plasma power agreed with the profile of emission intensity when the plasma discharged between the metal electrode and vapor layer surface. However, when the plasma discharged between the metal electrodes, the increasing rate of emission intensity was lower than the increase of plasma power. It implies that the surface reaction is more sufficient rather than the volume reaction in the radical generation, due to the high density of water molecule in the liquid.

  • PDF