• Title/Summary/Keyword: filleted and salted fishes

Search Result 2, Processing Time 0.016 seconds

Application of Cold-Osmotic Dehydration Method for Extending the Shelf Life during Frozen Storage of Filleted and Salted Fishes (염지어(鹽漬漁) 동결저장 중 Shelf life 연장을 위한 저온삼투압탈수법(低溫?透壓脫水法)의 적용)

  • Lee, Eung-Ho;Lee, Jung-Suck;Joo, Dong-Sik;Cho, Soon-Yeong;Choi, Heung-Gil;Kim, Jin-Soo;Cho, Man-Gi;Cho, Duck-Jae
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.722-729
    • /
    • 1997
  • The study was undertaken to extend the shelf life of filleted and salted fishes such as mackerel and jacopever. These filleted and salted fishes were dehydrated by dewatering sheet containing sodium polyacrylate resin at $5{\pm}1^{\circ}C$, wrapped with low density polyethylene film, and then stored at $-18{\pm}2^{\circ}C$. During the frozen storage, the change of brown pigment formation, peroxide value, carbonyl value, drip formation content in the cold-osmotic dehydrated fishes after salt dipping were much lower than those of non-dehydrated ones. Moreover, the proteins and Ca-ATPase in the cold-osmotic dehydrated fishes after salt dipping were more stable than those of non-dehydrated ones during frozen storage. It was supposed that the cold-osmotic dehydration pretreatment processing for filleted and salted fishes was useful in improvement of the frozen storage stability.

  • PDF

Processing of Ready-to-Cook Food Materials with Dark Fleshed Fish 2. Processing of Ready-to-Cook Low Salt Mackerel Fillet (일시다획성 적색육어류를 이용한 중간식품소재 개발에 관한 연구 2. 저염 고등어 Fillet의 가공)

  • LEE Byeong-Ho;LEE Kang-Ho;YOU Byeong-Jin;SUH Jae-Soo;JEONG In-Hak;CHOI Byeong-Dae;JI Young-Ae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.18 no.5
    • /
    • pp.409-416
    • /
    • 1985
  • In previous paper (Lee et al., 1983) processing method of sardine meat "surimi" was described as a part of the wort to develop new types of ready-to-cook food materials with dark fleshed fishes. As the other part of the work, processing of low salt mackerel fillet was investigated, in this paper, in which fresh mackerel was filleted, salted in brine or with dry salt for an adequate time until the expected salt concentration reached, washed, air dried (3 m/sec, 15 to $20^{\circ}C$), and finally packed individually in K-flex film bag by vacuum or $N_2$ gas substitution. Salting time and salt concentration of brine was decided by the salt level penetrated into the fillet. As the final salt level was fixed to 4 to $5\%$, salting for 20 hours with $10\%$ dry salt or in $15\%$ brine at $5^{\circ}C$ was enough to get that level of salt. If the final salt level was set 5 to $6\%$, salting for 20-24 hours with $15\%$ dry salt or in $20\%$ brine was adequate. Salt penetration, however, was not much influenced by salting method and temperature. Changes in VBN and salt soluble protein occurred more rapidly in cases of salting with dry salt at $20^{\circ}C$ than salted in brine at $5^{\circ}C$, although it was not significant in the period of 20 to 24 hours. Oxidation of lipid and histamine formation during salting at $20^{\circ}C$ could not be neglected if it was delayed loger than 25 hours. Insolubilizing the salt soluble proteins during the storage of salted fillet occurred rapidly regardless of storage temperature. Browning and histamine formation, however, was depended on temperature and packing condition. In case of air pack, deterioration by browning and rancid was deeply developed but not the case for the packs by vacuum or $N_2$ gas substitution. The shelf-life of the salted mackerel fillet based on panel scores of brown color and rancidity, appeared 21 days for the air packed, and more than 30 days for vacunm or $N_2$ gas packed fillet at $20^{\circ}C$.

  • PDF