• 제목/요약/키워드: fillet

Search Result 550, Processing Time 0.024 seconds

Development of the Simulated Die Casting Process by using Rapid Prototyping (쾌속 조형 공정을 이용한 다이캐스팅 제품의 시작 공정 개발)

  • Kim K. D.;Yang D. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.180-186
    • /
    • 2002
  • The simulated die-casting process in which the traditional plaster casting process is combined with Rapid Prototyping technology is being used to produce Al, Mg, and Zn die-casting prototypes. Unlike in the die-casting process, molten metal in the conventional plaster casting process is fed via a gravity pour into a mold and the mold does not cool as quickly as a die-casting mold. The plaster castings have much larger and grosser grain structure as compared as the die-castings and the thin walls of the plaster mold cavity may not be completely fillet Because of lower mechanical properties induced by the large grain structure and incomplete Idling, the conventional plaster casting process is not suitable for the trial die-casting Process. In this work, an enhanced trial die-casting process has been developed in which molten metal in the plaster mold cavity is vibrated and pressurized simultaneously. Patterns for the casting are made by Rapid Prototyping technologies and then plaster molds, which have runner system, are made using these patterns. Imparted pressurized vibration to molten metal has made grain structure of castings much finer and improved fluidity of the molten metal enough to obtain complete filling at thin walls which can not be filled in the conventional plaster casting process.

  • PDF

Analysis for Strength Estimation of Adhesive Joints (접착이음의 강도평가에 대한 해석)

  • Park Sung-Oan
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.5
    • /
    • pp.62-73
    • /
    • 2005
  • The objects of this research are to establish the criteria of peel occurrence considering the shape of bond terminus and to compare the strength properties of adhesive joint of different three type such as butt joint, T-shape, and single lap Joints. The criteria of peel occurrence at the bond terminus was suggested. Peel loads of three type adhesive joint (butt Joint, T-shape specimen, single lap joint) were determined from tensile tests. Principal stress distributions of these joints were determined from finite element method analysis. Then, peel occurrence was estimated with stress singularity factor$(K_{prin})$ when the terminus shape was square, with average principal stress when the terminus shape was rounded. The conclusions are summarized as follows; (1) In the non-filleted model(e.g., butt joint, T-shape specimen), principal stress shows singularity at the bond terminus, intensity of stress(principal stress) singularity $(K_{prin})$ can use as the criteria of peel occurrence at the bond terminus. (2) In the filleted model(e.g., single lap joint), principal stress has not affected singularity at the bond terminus. Average principal stress$(K_{av})$ can use as the criteria of peel occurrence at the bond terminus.

Mechanical characteristics of involute-circular arc composite tooth profile (인벌류우트-圓弧 合成齒形의 諸特性)

  • 변준형;최상훈;윤갑영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.6
    • /
    • pp.870-875
    • /
    • 1986
  • In this study, full-rounded tip curve of rack and its mating fillet curve of pinion in Involute-circular arc composite tooth profile are derived. Mechanical characteristics are calculated analytically, i.e., Specific sliding, Nominal bending stress at working root circle and the Contact factor of the arc of contact in circular arc part to the arc of double contact. These characteristics compared with standard involute tooth profile are improved in circular arc part of composite tooth profile. To obtain more efficient composite tooth profile, we studied these characteristics with regard to the changes of unwound angle and radius of circualr arc. And a design method of composite tooth profile is suggested. Composite tooth profile are compared with standard involute tooth profile.

A study on the characteristics of vertical welding positions using GA steel sheet in the $CO_2$ welding (GA 강판에 대한 $CO_2$ 수직용접자세의 특성에 관한 연구)

  • Kim, Jae-Seong;Jo, Yong-Jun;Lee, Gyeong-Cheol;Lee, Bo-Yeong
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.36-38
    • /
    • 2007
  • The instability of the arc in the $CO_2$ arc welding affects the quality of the weld in the automotive industry. This paper evaluates the effects of the arc stability in $CO_2$ arc welding with respect to vertical welding positions. In this experiment, galva-annealed steel sheets(CA) were used as specimens, and these materials were welded by adopting new Cold Metal Transfer (CMT) process. For each sample, fillet joint welding trials were carried out using the same conditions. Each part of welding joints was welded with vertical-up, vertical-down position at $45^{\circ},\;90^{\circ}\;and\;135^{\circ}$ degrees. A high speed camera and a welding signal monitoring system were used for monitoring fluid-flow phenomena in weld pools and frequency measurements, respectively. Through this study, the welding position were found to be key factors mainly to influence the arc stability in $CO_2$ welding moreover and that the arc stability in the vertical-up welding position was observed to be more stable than the vertical-down welding position below $90^{\circ}$.

  • PDF

Prediction of Welding Imperfection with Idealization of Welding and Their Accuracy (용접이상화에 의한 용접부정의 예측과 정도)

  • Lee, Jae-Yik;Chang, Kyong-Ho;Kim, You-Chul
    • Journal of Welding and Joining
    • /
    • v.31 no.5
    • /
    • pp.15-19
    • /
    • 2013
  • In order to reduce a grand compute time in prediction of welding distortion and residual stress by 3D thermal elastic plastic analysis, idealization of welding that is methods to heat input simultaneously in all weld metal on the same welding direction is carried out on two weld joints(butt welding and fillet welding). Then, the accuracy of acquired results is investigated through the comparison of the high accuracy prediction results. The thermal conduction analysis results by idealization of welding, the temperature is raised accompany with beginning of heat input because all of weld metal is heated input at the same time. On the other side, the temperature witch predicted with high accuracy is raised at the moment heating source passes the measuring points. So, there is difference of time between idealization of welding and considering of moving heat source faithfully. However, temperature history by idealization of welding is well simulated a high accuracy prediction results.

Computational Analysis of Bearing Screw Used in Lead Screw (리드스크루에 사용되는 베어링 스크루의 전산내구해석)

  • Kim, Min-Gun;Cho, Seok-Swoo;Kim, Dong-Youl;Kim, Yo-Seb
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.12
    • /
    • pp.1557-1562
    • /
    • 2011
  • In order to assess the stiffness of bearing screw used for lead screw, finite element analysis on stress and fatigue life of bearing screw has been performed. Based on these analysis, fatigue life dominant model of bearing screw was proposed. This improved model introduces a fillet to release the concentrated stress generated in the vicinity of bearing screw hole. This paper also considered the strength suitability when the bearing screw manufactured in W company was applied to X-ray CT.

Robust Design of Connecting Rod Using Variable Stress (변동 응력을 이용한 커넥팅 로드 강건 설계)

  • Lee, Seungwoo;Kim, Hangyu;Lee, Taehyun;Yang, Chulho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.6
    • /
    • pp.716-723
    • /
    • 2016
  • A connecting rod is a crucial part for transmitting an explosive force to the crankshaft in the engine. Stress concentration in connecting rod due to the accumulation of the repeated load may initiate micro crack and result in a crucial break down of the component. Two approaches are adopted to obtain a robust design of connecting rod. Inner and outer array matrix based on combinations of control factors and noise factors are constructed for using Taguchi method. Calculated stress results for each element of matrix are plotted in the Goodman diagram. Robust design approach by Taguchi method reduces stress concentration occurred in small end fillet area of the default model. Variable stress approach using Goodman diagram also confirms a robust design by Taguchi method.

Fatigue Life Prediction for Multiple Surface Cracks in Finite Plates (복수표면균열을 갖는 구조요소의 피로수명 예측)

  • J.D. Kim;J.W. Lee;C.H. Hong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.4
    • /
    • pp.75-86
    • /
    • 1996
  • A fatigue life prediction program for multiple planar surface cracks in finite plates and T-fillet joints, based on linear elastic fracture mechanics was developed. This prediction technique include the crack coalescence, mutual interation and the stress intensity concentration effect in welded joints. Total of 44 cases were compared with lida's and Vosikovsky's experimental results and it was found that the present method was a reasonable tool for the predictioin of fatigue life.

  • PDF

A Study on the Quantitative Evaluation of Arc Stability in AC SMAW (교류 피복 아크 용접에 있어서 아크 안정성의 정량적 평가에 관한 연구)

    • Journal of Welding and Joining
    • /
    • v.16 no.4
    • /
    • pp.125-135
    • /
    • 1998
  • The shielded metal arc welding (SMAW) by AC power source was performed to evaluate the arc stability by arc monitoring and analysing. In this study, the arc stability index was evaluated quantitatively by using he coefficient of resistance variation for welding time. This coefficient was obtained for the long time (20sec.) by analysing the waveforms of welding current, voltage and resistance. The coefficient was applied to indicate numerically the variation level of arc length and the degree of arc extinction. Using the coefficient of resistance variation in practical welding, the arc stability of the high titanium oxide electrode (KS E4313) turned out to be better than that of the low hydrogen electrode (KS E4316). In evaluating the skill level of welders by the coefficient, the horizontal fillet weaving welding became clear to be very discriminating because the higher level welder could weave in keeping constant arc length, but the lower level welder showed the characteristics of weaving with the unstable arc length. And it was confirmed that the welding defects as blow holes was formed when the arc stability index were high.

  • PDF

3D FEM Analysis of Warm Forging Process Design for Socket at Automotive Steering Unit (자동차 조향장치용 소???R의 온간단조 공정 설계를 위한 3차원 유한요소해석)

  • Lee Y. S.;Lee J. H.;Lee J. Y.;Bae M. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.186-189
    • /
    • 2001
  • In keeping with the needs of the times for energy and labor saving and simplifying production processes, interests has been growing in warm forging. Moreover, it is interested in increasing the material usage and production amounts. To improve the productivity and material usage, it is studied the process design of warm forging for socket. Until now, socket is manufactured by hot forging in hammer. The percentage of material usage is under $60\%$ in hammer forging. On the other han4 the percentage can be increased over $90\%$ in warm forging. To change the process from hot forging to warm forging, process designs must be performed. In this time, by using the FEM package, DEFORM-3D, we could get the shape of 1st process and minimum sealing pressure. They are very essential design data to decrease the trial and error. Practically, the overlap defect could be detected and eliminated with design modification of rib height and fillet radius. Moreover, forging load and minimum sealing pressure was defined by the 3D FEM analysis.

  • PDF