• Title/Summary/Keyword: fill material

Search Result 453, Processing Time 0.026 seconds

Separation and Purification of Polyphenols from Pine Needle (솔잎으로부터 Polyphenols의 분리.정제)

  • 김덕숙;김경이;이근보
    • Food Science and Preservation
    • /
    • v.9 no.1
    • /
    • pp.74-77
    • /
    • 2002
  • The antimicrobial and antioxidative effect of polyphenols (PP) was proved from pine needle. This method which was seperated and purified of PP used pine needle powder as the material and assorted the solvent and then it was added the 7 times (w/v) of the material. It was extracted at 85$^{\circ}C$ for 6 hours and was passed the column to fill with formamide-active carbon (1:1, w/v). It was concentrated and dried by sprayer, added n-hexane as the flood adding material in this powder, was extracted far 1 hrs. The each sample was obtained after removing the fat component then dried. The effect of extraction solvent among the hot water, ethyl alcohol (EtOH, isopropyl alcohol (IPA) was determined depending on the yield and the purity. The relationship between the yield and purity showed the positively inverse proportion and the extinction solvent was selected as the utilization of seperation material. As the method of seperation and purification of PP was accomplished, in order to use of the new subject matter the purity enhance is expected. The application of the new subject matter as the raw material of flood needs to examine actively except the functional properties of anticancerous, antimicrobial, antioxidative, antiallergic.

A Study on the Relationship between Factors Affecting Soldering Characteristics and Efficiency of Half-cell Soldering Process with Multi-wires (Half-cell 기반 multi-wires 접합 공정에서 접합 특성에 영향을 주는 요인과 효율의 상관관계 연구)

  • Kim, Jae Hun;Son, Hyoung Jin;Kim, Sung Hyun
    • Current Photovoltaic Research
    • /
    • v.7 no.3
    • /
    • pp.65-70
    • /
    • 2019
  • As a demand of higher power photovoltaic modules, shingled, multi-busbar, half-cell, and bifacial techniques are developed. Multi-busbar module has advantage for large amount of light havesting. And, half-cell is high power module for reducing resistive losses and higher shade tolerance. Recently, researches on multi-busbar is focused on reliability according to adhesion and intermetallic compound between Sn-Pb solder and Ag electrode. And half-cell module is researched to comparing with full-sized cell module for structure difference. In this study, we investigated the factors affecting to efficiency and adhesion of multi-wires half-cell module according to wire thickness, solder thickness, and flux. The results of solar simulator and peel test was that peel strength and efficiency of soldered cell is not related. But samples with flux including high solid material showed high efficiency. The results of FE-SEM and EDX line scan on cross-section between wire and Ag electrode for different flux showed thickness of solder joint between wire and Ag electrode is increasing through solid material increasing. Flux including high solid material would affect to solder behavior on Ag electrode. Higher solid material occurred lower growth of IMC layer because solder permeate to sider of wire ribbon than Ag electrode. And it increased fill factor for high efficiency. In soldering process, amount of solid material in flux and solder thickness are the factor related with characteristic of soldered photovoltaic cell.

Reduction Effect of Railroad Vibration by Utilizing Waste Tires (폐타이어의 철도진동 저감효과에 대한 실험적 연구)

  • Kim, Jin-Man;Lee, Kwang-Wu;Cho, Sam-Deok;Oh, Se-Yong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.1
    • /
    • pp.31-40
    • /
    • 2006
  • This paper describes the results of a series of field experiments which are carried out to assess the reduction effect of railroad vibration by utilizing waste tires. The ground vibration due to train service is measured in Honam Railroad line and Kyongbu Railroad line to assess the ground vibration with the domestic railroad line and train type before field model test. From the results of these tests, frequency on train service is presented from 5Hz to 100Hz and a range of excellence frequency is presented to be about from 20Hz to 40Hz in the domestic railroad line. Also, plate bearing tests are conducted to evaluate the variation of bearing capacity with different thickness of the waste tire layer and the fill layer. Finally, field model test is performed by using tire chips ($5cm{\times}5cm$ in size) as a reduction material of railroad vibration. The reduction effect of railroad vibration by utilizing waste tires increases with increasing the thickness of the waste tire layer and the frequency of the vibration source. The results of this experimental study was shown that the waste tire can be used for reduction of the railroad vibration.

Effect of Overlayer Thickness of Hole Transport Material on Photovoltaic Performance in Solid-Sate Dye-Sensitized Solar Cell

  • Kim, Hui-Seon;Lee, Chang-Ryul;Jang, In-Hyuk;Kang, Wee-Kyung;Park, Nam-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.670-674
    • /
    • 2012
  • The photovoltaic performance of solid-state dye-sensitized solar cells employing hole transport material (HTM), 2,2',7,7'-tetrakis-(N,N-di-p-methoxyphenyl-amine)-9,9'-spirobifluorene (spiro-MeOTAD), has been investigated in terms of HTM overlayer thickness. Two important parameters, soak time and spin-coating rate, are varied to control the HTM thickness. Decrease in the period of loading the spiro-MeOTAD solution on $TiO_2$ layer (soak time) leads to decrease in the HTM overlayer thickness, whereas decrease in spin-coating rate increases the HTM overlayer thickness. Photocurrent density and fill factor increase with decreasing the overlayer thickness, whereas open-circuit voltage remains almost unchanged. The improved photocurrent density is mainly ascribed to the enhanced charge transport rate, associated with the improved charge collection efficiency. Among the studied HTM overlayer thicknesses, ca. 230 nm-thick HTM overlayer demonstrates best efficiency of 4.5% at AM 1.5G one sun light intensity.

Optimization of Solar Cell Electrode Structure for Shingled Module (Shingled 모듈 적용을 위한 태양전지 전극 구조 최적화)

  • Oh, Won Je;Park, Ji Su;Hwang, Soo Hyun;Lee, Su Ho;Jeong, Chae Hwan;Lee, Jae Hyeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.5
    • /
    • pp.290-294
    • /
    • 2018
  • The shingled photovoltaic module can be produced by joining divided solar cells into a string of busbarless structure and arranging them in series and parallel to produce a module, in order to produce a high output per unit area. This paper reports a study to optimize solar cell electrode structure for shingled photovoltaic module fabrication. The characteristics of each electrode structure were analyzed according to the simulation program as follow: 80.62% fill factor in the six-junction solar cell electrode structure and 19.23% efficiency in the five-junction electrode structure. Therefore, the split electrode structure optimized for high-density and high-output shingled module fabrication is the five-junction solar cell electrode structure.

Fabrication and Characterization of Dye-Sensitized Solar Cells Based on Rhodamine Dyes (로다민 기반 염료감응형 태양전지의 제조 및 특성 분석)

  • Choi, Kang-Hoon;Jung, Hye-In;An, Byeong-Kwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.11
    • /
    • pp.731-736
    • /
    • 2015
  • Rhodamine B (RhB) was utilized as a dye sensitizer for dye-sensitized solar cells (DSSCs) and its photovoltaic property was examined under the illumination of AM 1.5 G, $100mWcm^{-2}$. DSSCs based on RhB exhibited typical photovoltaic properties with an open-circuit voltage ($V_{OC}$) of 0.34 V, a short-circuit current ($J_{SC}$) of $1.55mA{\cdot}cm^{-2}$, a fill factor (FF) of 50%, and a conversion efficiency (PCE) of 0.26%. In order to further improve the photovoltaic properties of RhB-based DSSCs, the effect of (i) incorporating a strong electron-donating NCS unit into the RhB molecular backbone, (ii) combining a bis-negatively charged zinc complex anion ($Zn-dmit_2$, dmit=di-mercapto-dithiol-thione) with the amine cation of RhB, (iii) co-adsorbing RhB dyes with chenodeoxycholic acid (CDCA) molecules onto porous $TiO_2$ electrodes, was investigated and discussed.

Photovoltaic Properties in $CuPc/C_{60}$ heterojunction Structure ($CuPc/C_{60}$ 이종접합을 이용한 광기전 특성)

  • Kim, S.K.;Lee, H.D.;Huh, S.W.;Chung, D.H.;Oh, H.S.;Lee, W.J.;Lee, J.U.;Kim, T.W.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05d
    • /
    • pp.65-68
    • /
    • 2003
  • Recently, there is a growing concern on the photovoltaic effects using organic materials. This is a phenomena which converts the solar energy into the electrical one. We have fabricated a device structure of ITO/PEDOT:PSS/CuPc/$C_{60}$/BCP/Al. The PEDOT:PSS layer is made by spin coating. and the other organic layers are made by thermal vapor deposition. By measuring the current-voltage characteristics with an illumination of light. we have obtained a value of $V_{oc}$=0.358V and $J_{sc}$=0.338mA/$cm^2$. A fill factor and efficiency are about 0.271 and 0.033%, respectively. A 500W xenon lamp(ORIEL) was used for a light source, and the light intensity illuminated into the device was about 10mW.

  • PDF

An Optimization of Restoration Method at Class V Lesion of a Finite Element Tooth Model (5급 병소가 있는 치아 유한요소 모델의 수복방법 최적화)

  • Kim, Kwang-Hoon;Woo, Sung-Gwan;Son, Kwon;Park, Jeong-Kil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.8
    • /
    • pp.678-684
    • /
    • 2008
  • A general treatment is to restore abfraction lesions with dental filler materials to reduce stress concentration. A material should be selected from various dental products based on long term experiences of dentist or personal preference concerning filler methods. A quantitative criterion is necessary to make an evaluation of the results as dentists decide treatment methods and dental materials relying on their clinical experiences. The purpose of this study is to find an optimal restoration method and material for noncarious cervical lesions using the finite element method. An objective function was defined to minimize the sum of tension or compression stress. Trial-and-error and approximation were used to find an optimal restoration method. An optimal solution was to fill TetricFlow inside the lesion and Z100 in the remaining region. The most desirable thickness ratio of the two filler materials was 0.125 with trial-and-error and it was similar to the results of approximation, 0.121 and 0.132.

Study on the Electrical Properties of W-interconnected DSSC Modules According to Variation of the Working Electrode Width (광전극 폭 변화에 따른 W-상호연결 염료감응 태양전지 모듈의 전기적 특성 연구)

  • Oh, Byeong-Yun;Kim, Sang-Ki;Kim, Doo-Gun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.4
    • /
    • pp.298-303
    • /
    • 2013
  • In this study, the W-interconnected dye-sensitized solar cell (DSSC) modules composed of a number of rectangular cells connected in series were investigated, where neighboring cells are processed in reverse. The DSSC modules, a module of dimension about 200 mm ${\times}$ 200 mm, were fabricated with different working electrode width ranging from 5 mm to 21 mm. The short-circuit current of the module increased as the working electrode width increased. Whereas, the decrease in the working electrode width resulted in the increase of the conversion energy efficiency, fill factor, and open-circuit voltage, which is explained by the fact that the possibility that electrons are recombined along their path on the transparent conductive oxide substrate decreases. The module with the conversion energy efficiency of 3.59% was obtained with the working electrode width of 5 mm.

System of a Selenium Based X-ray Detector for Radiography (일반촬영을 위한 셀레늄 기반의 엑스선 검출기 시스템)

  • Lee, D.G.;Park, J.K.;Choi, J.Y.;Ahn, S.H.;Nam, S.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.817-820
    • /
    • 2002
  • Amorphous selenium based flat panel detectors convert incident x-ray to electric signal directly. Flat panel detectors gain more interest real time medical x-ray imaging. TFT array and electric readout circuits are used in this paper offered by LG.Philips.LCD. Detector is based on a $1536{\times}1280$ array of a-Si TFT pixels. X-ray conversion layer(a-Se) is deposited upper TFT array with a $400{\mu}m$ by thermal deposition technology. Thickness uniformity of this layer is made of thickness control system technology$({\leq}5%)$. Each $139{\mu}m{\times}139{\mu}m$ pixel is made of thin film transistor technology, a storage capacitor and collecting electrode having geometrical fill factor of 86%. This system show dynamic performance. Imaging performance is suited for digital radiography imaging substitute by conventional radiography film system.

  • PDF