• Title/Summary/Keyword: field-emission scanning electron microscopy

Search Result 686, Processing Time 0.037 seconds

Effect of Annealing Temperatures on the Properties of Zn2SnO4 Thin Film (열처리 온도에 따른 Zn2SnO4 박막의 특성)

  • Shin, Johngeon;Cho, Shinho
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.2
    • /
    • pp.74-78
    • /
    • 2019
  • $Zn_2SnO_4$ thin films were deposited on quartzs substrates by using radio-frequency magnetron sputtering system. Thermal treatments at various temperatures were performed to evaluate the effect of annealing temperatures on the properties of $Zn_2SnO_4$ thin films. Surface morphologies were examined by using field emission-scanning electron microscopy and showed that sizes of grains were slightly increased and grain boundaries were clear with increasing annealing temperatures. The deposited $Zn_2SnO_4$ thin films on quartzs substrates were amorphous structures and no distinguishable crystallographic changes were observed with variations of annealing temperatures. The optical transmittance was improved with increasing annealing temperatures and was over 90% in the wavelength region between 350 and 1100 nm at the annealing temperature of $600^{\circ}C$. The optical energy bandgaps, which derived from the absorbance of $Zn_2SnO_4$ thin films, were increased from 3.34 eV to 3.43 eV at the annealing temperatures of $450^{\circ}C$ and $600^{\circ}C$, respectively. As the annealing temperature was increased, the electron concentrations were decreased. The electron mobility was decreased and resistivity was increased with increasing annealing temperatures with exception of $450^{\circ}C$. These results indicate that heat treatments at higher annealing temperatures improve the optical and electrical properties of rf-sputtered $Zn_2SnO_4$ thin films.

Effect of Electron-beam Irradiaton on the Artificial Bone Substitutes Composed of Hydroxyapatite and Tricalcium Phosphate Mixtures with Type I Collagen (수산화인회석과 인산삼칼슘 및 1형 콜라젠 혼합골의 전자빔 조사 효과)

  • Park, Jung Min;Kim, Soung Min;Kim, Min Keun;Park, Young Wook;Myoung, Hoon;Lee, Byung Cheol;Lee, Jong Ho;Lee, Suk Keun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.35 no.1
    • /
    • pp.38-50
    • /
    • 2013
  • Purpose: The aim of this study is to evaluate the effect and potential of electron beam (E-beam) irradiation treatment to the synthetic bony mixtures composed of hydroxyapatite (HA; Bongros$^{(R)}$, Bio@ Co., Korea) and tricalcium phosphate (${\beta}$-TCP, Sigma-Aldrich Co., USA), mixed at various ratios and of type I collagen (Rat tail, BD Biosciences Co., Sweden) as an organic matrix. Methods: We used 1.0~2.0 MeV linear accelerator and 2.0 MeV superconductive linear accelerator (power 100 KW, pressure 115 kPa, temperature $-30{\sim}120^{\circ}C$, sensor sensitivity 0.1~1.2 mV/kPa, generating power sensitivity 44.75 mV/kPa, supply voltage $5{\pm}0.25$ V) with different irradiation dose, such as 1, 30 and 60 kGy. Structural changes in this synthetic bone material were studied in vitro, by scanning electron microscopy (SEM), elementary analysis and field emission scanning electron microscope (FE-SEM), attenuated total reflection (ATR), and electron spectroscopy for chemical analysis (ESCA). Results: The large particular size of HA was changed after E-beam irradiation, to which small particle of TCP was engaged with organic collagen components in SEM findings. Conclusion: The important new in vitro data to be applicable as the substitutes of artificial bone materials in dental and medical fields will be able to be summarized.

The Study on the Phase Transition and Piezoelectric Properties of Bi0.5(Na0.78K0.22)0.5TiO3-LaMnO3 Lead-free Piezoelectric Ceramics

  • Lee, Ku Tak;Park, Jung Soo;Cho, Jeong Ho;Jeong, Young Hun;Paik, Jong Hoo;Yun, Ji Sun
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.4
    • /
    • pp.237-242
    • /
    • 2015
  • $Bi_{0.5}(Na_{0.78}K_{0.22})_{0.5}TiO_3$ (BNKT) lead-free piezoelectric ceramics modified by $LaMnO_3$ (LM) were fabricated by conventional solid-state method. The crystal structure and the morphology of the lead free ceramics were analyzed by XRD (X-ray diffraction) and FE-SEM (Field Emission Scanning Electron Microscopy). The LM modified BNKT ceramics have a phase transition from ferroelectric tetragonal to non-polar pseudo-cubic. Despite decreases in the remnant polarization ($P_r$) and coercive field ($E_c$) in the P-E hysteresis loops, the electric-field induced strain properties were significantly enhanced by the LM modification. The highest value of $S_{max}/E_{max}=412pm/V$ at an applied electric field of 5 kV/mm was found in BNKT-0.01LM ceramic.

A Study on the Extraction of Monasil PCA using Liquid CO2 (액체 이산화탄소 이용한 Monasil PCA 추출에 대한 연구)

  • Cho, Dong Woo;Oh, Kyoung Shil;Bae, Won;Kim, Hwayong;Lee, Kab-Soo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.684-689
    • /
    • 2012
  • Poly(acrylic acid) (PAA) microspheres is one of the widely-used polymeric materials for the bio-field application and the electric materials. For the synthesis of PAA microspheres, the polymerization technique using surfactants is applied. After the synthesis, the purification and separation processes are required for the removal of surfactant. When general organic solvents were used, many problems, such as huge amount of waste solvent, additional separation processes, and the possibility of residual media, were occurred. Thus, High-pressure Soxhlet extraction using liquid $CO_2$ was developed to solve these problems. In this study, High-pressure Soxhlet extraction of the synthesized PAA microspheres using liquid $CO_2$ was conducted for the removal of Monasil PCA which is used for the dispersion polymerization of acrylic acid in compressed liquid Dimethyl ether (DME). The morphology of the extracted PAA particles was checked by field emission scanning electron microscopy (FE-SEM) and the residual concentration of Monasil PCA was analyzed by inductively coupled plasma - Optical Emission Spectrometer (ICP-OES). For studying the effect of the solvent effect, Soxhlet extraction was conducted using n-hexane, liquid DME, and liquid $CO_2$. In case of n-hexane, some extracted PAA microspheres were produced. However, deformation was also occurred due to the high thermal energy of n-hexane vapor. Liquid DME could not remove Monasil PCA. When using liquid $CO_2$, the extracted PAA microspheres which were free for the residual solvent were produced without deformation. For finding the optimum operating condition, high-pressure Soxhlet extraction was conducted for 8 hours with changing the temperature of reboiler and condenser. When the extractor temperature is $19.6{\pm}0.2^{\circ}C$ and the pressure is $51.5{\pm}0.5$ bar, the best removal efficiency was obtained.

RF 마그네트론 스퍼터링을 이용하여 온도별로 증착한 CIGS 박막의 미세구조 및 화학 조성 분석

  • Jeong, Jae-Heon;Jo, Sang-Hyeon;Song, Pung-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.278-279
    • /
    • 2012
  • 최근 들어 세계적인 고유가 행진과 화석연료 고갈에 대응하기 위하여 대체 에너지원 발굴에 대한 필요성이 높아지고 있다. 그 중 CIGS 박막 태양전지는 미래 신재생 에너지 자원의 가장 유망한 후보군 중 하나이다. 기존의 Si 기반의 태양전지의 경우 시간경과에 따른 효율 저하, 높은 재료비, 복잡한 공정으로 인하여 대량생산이 힘든 단점을 가지고 있다. 반면 박막 태양전지의 경우 생산 원가를 낮출 수 있는 태양전지 제조기술로서는 2세대 태양전지로 불리우며, 에너지 변환 효율과 생산 원가에서 우월성을 가진다. 그리고 이러한 CIGS 박막 태양전지를 단일 CIGS 타겟을 이용하여 스퍼터링 공정으로 제작하면 기존에 사용되었던 동시 증발법에 비해서 간단하고 대면적 코팅 및 대량 생산이 가능하다. 본 연구에서 사용된 기판으로는 $25{\times}25mm$ 크기의 Soda Lime Glass (SLG) 위에 DC 마그네트론 스퍼터링 공정으로 Mo가 $1{\mu}m$ 증착된 시편을 이용하여, 2 inch 단일 CIGS 타겟 (MATERION, CIGS Target 25-17.5-7.5-50 at%)을 기판 가열하여 증착하였다. RF 파워는 80 W, 기판 온도는 RT, 100, 200, 300, $400^{\circ}C$로 가열 후 증착하였고, CIGS 박막의 두께는 약 $1{\mu}m$로 일정하게 하였다. CIGS/Mo 박막의 파워별 미세구조 분석을 위해 X-ray Diffraction (XRD, BRUKER GADDS)로 측정하였으며, 박막의 결정립 크기를 확인하기 위해 Field Emission Scanning Electron Microscopy (FE-SEM, HITACHI)을 사용하여 측정하였다. 조건별 박막의 조성 분석 및 표면조도는 Energy Dispersive X-ray Spectroscopy (EDS, HORIBA 7395-H)와 Atomic Force Microscopy (AFM)을 이용하여 각각 평가하였다. 마지막으로 광학적 특성을 평가하고 박막의 밴드갭 에너지를 계산하기 위해서 190 nm에서 1,100 nm의 영역 대에서 자외선 광학 측정기(UV-Vis, HP-8453, AGLIENT)로 투과도를 측정하여 밴드갭 에너지를 계산하였다. 증착된 CIGS 박막은 기판 온도가 증가함에 따라 결정립 크기가 커지는 경향을 보였다. 이는 기판 상에 도달한 스퍼터 원자의 확산 에너지 증가로 인한 것으로 생각되어진다. 또한, 기판온도에 따른 결정립 성장 변화는 4성분계의 박막의 조성 및 핵생성 밀도와 관련되어 설명되어질 것이다.

  • PDF

Fabrication of TiAl alloy by centrifugal casting and its microstructure (원심주조법에 의한 TiAl 합금의 제조 및 미세구조 분석)

  • Ryu, Jeong Ho;Lee, Ho Jun;Cho, Hyun Su;Paeng, Jong Min;Park, Jong Bum;Lee, Jung-Il
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.5
    • /
    • pp.229-234
    • /
    • 2017
  • In this study, TiAl alloy was fabricated by a centrifugal casting method for turbo charge of automotive. Optimum conditions for defectless morphology using various ceramic mold were investigated. The crystal structure, microstructure, and chemical composition of the TiAl prepared by centrifugal casting were studied by X-ray diffractometer (XRD), optical microscopy (OM), field emission scanning electron microscopy (FE-SEM) and energy dispersive spectroscopy (EDS), microvickers hardness analyzer (HV). Two kinds of dendrite structures were observed with 4-fold and 6-fold symmetries. The FE-SEM, EDS and HV examinations of the as-cast TiAl showed that the thickness of the oxide layer (${\alpha}$-case) was typically less than $50{\mu}m$.

Effects of GPS heat-treatment on microstructure of as-cast Co-Cr alloy (Co-Cr 주조합금의 미세구조에 미치는 GPS 열처리 효과)

  • Ryu, Jeong Ho;Lee, Ho Jun;Cho, Hyun Su;Paeng, Jong Min;Park, Jong Bum;Lee, Jung-Il
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.5
    • /
    • pp.263-267
    • /
    • 2017
  • The Co-Cr as-cast alloys are widely used in the manufacturing of orthopedic implants made with investment casting techniques because of its high strength, good corrosion resistance and excellent biocompatibility properties. Carbide precipitation at grain boundaries and interdendritic regions is the major strenthening mechanism in the as-cast condition. In this study, effects of GPS (Gas Pressured Sintering) heat-treatment on the microstructure and crystallinity of the as-cast Co-Cr alloy prepared by investment casting were investigated. It was confirmed that the content of metal carbide ($Cr_{23}C_6$) was increased in the grain boundary by using optical microscopy (OM), field-emission scanning electron microscopy (FE-SEM) and energy dispersive spectroscopy (EDS).

Fabrication Thermal Responsive Tunable ZnO-stimuli Responsive Polymer Hybrid Nanostructure

  • Lee, Jin-Su;Nam, Sang-Hun;Yu, Jung-Hun;Hwang, Ki-Hwan;Ju, Dong-Woo;Jeon, So-Hyoun;Seo, Hyeon-Jin;Yun, Sang-Ho;Boo, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.429.2-429.2
    • /
    • 2014
  • ZnO nanowire is known as synthesizable and good mechanical properties. And, stimuli-responsive polymer is widely used in the application of tunable sensing device. So, we combined these characteristics to make precise tunable sensing devise. In this work, we investigate the dependence of ZnO nanowire alignment and morphology on si substrate using nanosphere template with various conditions via hydrothermal process. Also, pH-temperature dependant tuning ability of nanostructure was studied. The brief experimental scheme is as follow. First, Zno seed layer was coated on a si wafer ($20{\times}20mm$) by spin coater. And then $1.15{\mu}m$ sized close-packed PS nanospheres were formed on a cleaned si substrate by using gas-liquid-solid interfacial self-assembly method. After that, zinc oxide nanowires were synthesized using hydrothermal method. Before the wire growth, to specify the growth site, heat treatment was performed. Finally, NIPAM(N-Isopropylacrylamide) was coated onto as-fabricated nanostructure and irradiated by UV light to form the PNIPAM network. The morphology, structures and optical properties are investigated by FE-SEM(Field Emission Scanning electron Microscopy), XRD(X-ray diffraction), OM(Optical microscopy), and WCA(water contact angle).

  • PDF

Effects of TiN and ZrN Coating on Surface Characteristics of Orthodontic Wire (교정용 와이어의 표면특성에 미치는 TiN 및 ZrN 코팅영향)

  • Kim, W.G.;Kim, D.Y.;Choe, H.C.
    • Journal of Surface Science and Engineering
    • /
    • v.41 no.4
    • /
    • pp.147-155
    • /
    • 2008
  • The dental orthodontic wire provides a good combination of strength, corrosion resistance and moderate cost. The purpose of this study was to investigate the effects of TiN and ZrN coating on corrosion resistance and physical property of orthodontic wire using various instruments. Wires(round type and rectangular type) were used, respectively, for experiment. Ion plating was carried out for wire using Ti and Zr coating materials with nitrogen gas. Ion plated surface of each specimen was observed with field emission scanning electron microscopy(FE-SEM), energy dispersive X-ray spectroscopy(EDS), atomic force microscopy(AFM), vickers hardness tester, and electrochemical tester. The surface of TiN and ZrN coated wire was more smooth than that of other kinds of non-coated wire. TiN and ZrN coated surface showed higher hardness than that of non-coated surface. The corrosion potential of the TiN coated wire was comparatively high. The current density of TiN coated wire was smaller than that of non-coated wire in 0.9% NaCl solution. Pit nucleated at scratch of wire. The pitting corrosion resistance $|E_{pit}-E_{rep}|$ increased in the order of ZrN coated(300 mV), TiN coated(120 mV) and non-coated wire(0 mV).

Effect of Substrate Temperature and Post-Annealing on Structural and Electrical Properties of ZnO Thin Films for Gas Sensor Applications

  • Do, Gang-Min;Kim, Ji-Hong;No, Ji-Hyeong;Lee, Gyeong-Ju;Mun, Seong-Jun;Kim, Jae-Won;Park, Jae-Ho;Jo, Seul-Gi;Sin, Ju-Hong;Yeo, In-Hyeong;Mun, Byeong-Mu;Gu, Sang-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.105-105
    • /
    • 2011
  • ZnO is a promising material since it could be applied to many fields such as solar cells, laser diodes, thin films transistors and gas sensors. ZnO has a wide and direct band gap for about 3.37 eV at room temperature and a high exciton binding energy of 60 meV. In particular, ZnO features high sensitivity to toxic and combustible gas such as CO, NOX, so on. The development of gas sensors to monitor the toxic and combustible gases is imperative due to the concerns for enviromental pollution and the safety requirements for the industry. In this study, we investigated the effect of substrate temperature and post-annealing on structural and electrical properties of ZnO thin films. ZnO thin films were deposited by pulsed laser deposition (PLD) at various temperatures at from room temperature to $600^{\circ}C$. After that, post-annealing were performed at $600^{\circ}C$. To inspect the structural properties of the deposited ZnO thin films, X-ray diffraction (XRD) was carried out. For gas sensors, the morphology of the films is dominant factor since it is deeply related with the film surface area. Therefore, the atomic force microscopy (AFM) and field emission scanning electron microscopy (FE-SEM) were used to observe the surface of the ZnO thin films. Furthermore, we analyzed the electrical properties by using a Hall measurement system.

  • PDF