• Title/Summary/Keyword: field strength

Search Result 3,442, Processing Time 0.034 seconds

Bending Strength of Textured Alumina Prepared by Slip Casting in a Strong Magnetic Field

  • Suzuki, Tohru S.;Uchikoshi, Tetsuo;Morita, Koji;Hirage, Keijiro;Sakka, Yoshio
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1099-1100
    • /
    • 2006
  • The mechanical properties of ceramics materials can be tailored by designing their microstructures. We have reported that development of texture can be controlled by slip casting in a strong magnetic field followed by heating even for diamagnetic ceramics such as alumina. A strong magnetic field of 12T was applied to the suspension indcuding alumina powder to rotate each particle during slip casting. The sintering was conducted at the desired temperature in air without a magnetic field. C-axis of alumina was parallel to the magnetic field. Bending strength of textured alumina depended on the direction of oriented microstructure.

  • PDF

Effect of a Magnetic Field on the Solute Distribution of Czochralski Single Crystal Growth (초크랄스키 단결정 성장에서 자기장이 용질분포에 미치는 영향)

  • Kim, Moo Gewi;Suh, Jeong Se
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.3
    • /
    • pp.388-397
    • /
    • 1999
  • Numerical simulations are carried out for the magnetic Czochralski single crystal growth system. It Is shown that a magnetic field significantly suppresses the convective flow and as the strength of magnetic field becomes to be stronger, the heat transfer in the melt is dominated by conduction rather than convection. By imposing a cusp magnetic field, the growth interface shape becomes convex toward the melt. When the axial magnetic field is imposed, there occurs an inversion of the interface shape with increase of the magnetic field strength. The oxygen concentration near the interface decreases with increasing cusp magnetic field strength while axial field causes an increase of an oxygen concentration at the central region and decrease of that at the edge of the crystal. The results show that the cusp magnetic field has advantages over an axial magnetic field In the radial uniformity of oxygen as well as in the additional degree of control.

Fundamental Properties of Controlled Low Strength Materials Mixed Blast Furnace Slag and Sewage Sludge (고로슬래그미분말 및 하수슬러지를 혼입한 시멘트계 저강도 재료의 기초적 물성)

  • Kim, Dong-Hun;Park, Shin;Lim, Nam-Gi
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.53-54
    • /
    • 2015
  • As the result of uniaxial compression strength test on the CLMS mixing BFS and SS with BFS 4000, it required to determine the desired strength through increasing unit quantity of cement in mixing process because of dramatic strength deterioration of strength according to increasing replacing rate. In this study's result, regardless of differences in fine aggregates used, in order to get uniaxial compression strength in the scope exceeding criteria of minimum strength for applying to the field, the most reasonable combination was to mix replacing BFS with fineness of 6000 in 30%. For the CLMS mixing BFS and SS, in order to improve flow ability by securing quantity of minimum unit and to repress bleeding rate with securing uniaxial compress strength considering the field applicability, regardless of differences in fine aggregates used, to mix BFS over 6000 in 30% was most effective.

  • PDF

The Compressive Strength Prediction of Crushed Sand Concrete by Non-Destructive Test Method (부순모래 콘크리트의 비파괴 시험에 의한 압축강도 추정)

  • Kim, Myung-Sik;Jang, Hei-Suk;Beak, Dong-Il;Sin, Nam-Gyun;Kim, Kang-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.145-148
    • /
    • 2006
  • Schmidt hammer and ultra-sonic method are commonly used for crushed sand concrete compressive strength test in a construction field. At present, various of equations for prediction of strength are present, which have been used in a construction field. The purpose of this study is to evaluate the correlation between prediction strength by presentation equations and destructive strength to test specimen, and find out which is a suitable equation for the construction site, In this study, a strength test was carried out destructive test by means of core sampling and traditional test. Non-destructive test was conducted Schmidt hammer and ultra-sonic method, the experimental parameter were concrete age, curing condition, test method and strength level. It is demonstrated that the correlation behavior of crushed sand concrete strength in this study good due to the perform analysis of correlation between core, destructive strength and non-destructive strength.

  • PDF

A Study on The Compressive Strength Correlation by Various Nondestructive Test Method (각종 비파괴 검사법에 의한 압축강도 상관연구)

  • 최원호;신도철;이대우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.767-772
    • /
    • 1998
  • schumidt hammer and ultra-sonic method are commonly used for concrete compressive strength test in a construction field. At present, various kinds of equations for estimation of strength are present, which have been used in a construction field. The purpose of this study is to evaluate the correlation between estimation strength by presentation equations and destructive strength to test specimen, and find out which is a suitable equation for this construction site. In this study, a strength test was carried out destructive test by means of core sampling. Non destructive test was conducted Schumidt hammer and ultra-sonic method, the experimental parameter were concrete age, test method and strength level. It is demonstrated that the correlation behavior of concrete strength in this study good due to the performs analysis of correlation between core strength and nondestructive strength.

  • PDF

Experimental study for application of the punch shear test to estimate adfreezing strength of frozen soil-structure interface

  • Park, Sangyeong;Hwang, Chaemin;Choi, Hangseok;Son, Youngjin;Ko, Tae Young
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.281-290
    • /
    • 2022
  • The direct shear test is commonly used to evaluate the shear behavior of frozen soil-structure interfaces under normal stress. However, failure criteria, such as the Mohr-Coulomb failure criterion, are needed to obtain the unconfined shear strength. Hence, the punch shear test, which is usually used to estimate the shear strength of rocks without confinement, was examined in this study to directly determine the adfreezing strength. It is measured as the shear strength of the frozen soil-structure interface under unconfined conditions. Different soils of silica sand, field sand, and field clay were prepared inside the steel and concrete ring structures. Soil and ring structures were frozen at the target temperature for more than 24 h. A punch shear test was then conducted. The test results show that the adfreezing strength increased with a decrease in the target temperature and increase in the initial water content, owing to the increase in ice content. The adfreezing strength of field clay was the smallest when compared with the other soil specimens because of the large amount of unfrozen water content. The field sand with the larger normalized roughness showed greater adfreezing strength than the silica sand with a lower normalized roughness. From the experiment and analysis, the applicability of the punch shear test was examined to measure the adfreezing strength of the frozen soil-structure interface. To find a proper sample dimension, supplementary experiments or numerical analysis will be needed in further research.

A Method of Prediction and Analysis of Electromagnetic Interference (EMI) in Wireless Power Transfer System Operating at 13.56 MHz (13.56 MHz 무선 에너지 전송 시스템의 효율적인 전자파 장해(EMI) 예측 및 분석 방법)

  • Shim, Hyun-Jin;Park, Jong-Min;Nam, Sangwook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.9
    • /
    • pp.873-882
    • /
    • 2013
  • The effective way of estimation and analysis of EMI(Electromagnetic Interference) in Wireless Power Transfer System operating at 13.56 MHz is proposed. In this paper methodology of driving magnetic field strength and electric loop current of two antennas which are in free space and on PEC plane using image theory and duality is proposed. Perfect electric conductor(PEC) is planar, infinite in extent, and perfectly conducting plane. And we will refer it as PEC plane. A equivalent circuit model is used to analyze. Using this theoretical analysis, we can derive maximum magnetic field strength of the far-field region numerically using measured data of near-field maximum magnetic field strength. The experimental results using commercial numerical simulation tool are in agreement with the theoretical results. Also, using the derivation of maximum magnetic field strength in the far-field region, we can easily estimate the maximum allowable power dissipation that meets EMI regulations.

Material Properties of Arctic Sea Ice during 2010 Arctic Voyage of Icebreaking Research Vessel ARAON: Part 2 - Compressive Strength, Flexural Strength, and Crystal Structures (쇄빙연구선 ARAON호를 이용한 북극해 해빙의 재료특성 (2) - 해빙의 압축강도, 굽힘강도 및 결정구조 -)

  • Kim, Dae-Hwan;Park, Young-Jin;Choi, Kyung-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • To correctly estimate ice load and ice resistance for a ship's hull, it is essential to understand the material properties of sea ice during ice field trials and to use the proper experimental procedure for gathering ice strength data. The first Korean-made icebreaking research vessel (IBRV), ARAON, had her second sea ice trial in the Arctic Ocean during July and August of 2010. This paper describes the test procedures used to properly obtain sea ice strength data, which provides the basic information on the ship's performance in an ice-covered sea and can be used to estimate the correct ice load and ice resistance on the IBRV ARAON. The data gathered from three sea ice field trials during the Arctic voyage of the ARAON includes the ice compressive strength, flexural strength, and failure strain of sea ice. This paper analyzes the gathered sea ice data in comparison with data from the first voyage of the ARAON during her Antarctic Sea ice trial in January 2010.

Properties and Field Application of Non-shrinkage High Strength Concrete (무수축 고강도 콘크리트의 특성 및 현장적용)

  • 조일호;성찬용
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.6
    • /
    • pp.115-121
    • /
    • 2000
  • The purpose of this research is to investigate properties and field application of non-shrinkage high strength concrete containing expansive additive. Before the field applications, several basic laboratory test are performed to evaluate the characteristics of air content, workability and strength of the concrete using calcium sulfa aluminate(CSA) expansive additive. As a result, high strength concrete using CSA expansive additive show similar workability and compressive strength to that normal concrete, and the optimum replacement ratio of them is obtained by 10% CSA expansive additive. Accordingly, it can be concluded that the use of CSA expansive additive is effective to prevent shrinkage crack and to achieve volume stability of concrete structure.

  • PDF

The Study on the Improvement of Compressive Strength Using Superlasticizer (유동화제 사용을 통한 압축강도 개선에 관한 연구)

  • Kim, Jung-Ho;Jung, Yoong-Hoon;Kim, Choong-Gyum
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.190-191
    • /
    • 2022
  • This study was conducted to improve the compression strength of concrete in the field and analyzed the physical and mechanical properties of concrete using of fluidizers. Through this, the purpose of stable compression strength in the field.

  • PDF