• 제목/요약/키워드: field plate load

검색결과 200건 처리시간 0.03초

Investigation of buckling behavior of functionally graded piezoelectric (FGP) rectangular plates under open and closed circuit conditions

  • Ghasemabadian, M.A.;Kadkhodayan, M.
    • Structural Engineering and Mechanics
    • /
    • 제60권2호
    • /
    • pp.271-299
    • /
    • 2016
  • In this article, based on the higher-order shear deformation plate theory, buckling analysis of a rectangular plate made of functionally graded piezoelectric materials and its effective parameters are investigated. Assuming the transverse distribution of electric potential to be a combination of a parabolic and a linear function of thickness coordinate, the equilibrium equations for the buckling analysis of an FGP rectangular plate are established. In addition to the Maxwell equation, all boundary conditions including the conditions on the top and bottom surfaces of the plate for closed and open circuited are satisfied. Considering double sine solution (Navier solution) for displacement field and electric potential, an analytical solution is obtained for full simply supported boundary conditions. The accurate buckling load of FGP plate is presented for both open and closed circuit conditions. It is found that the critical buckling load for open circuit is more than that of closed circuit in all loading conditions. Furthermore, it is observed that the influence of dielectric constants on the critical buckling load is more than those of others.

평판재하시험으로부터 실제기초의 지지력 및 침하량 산정시 Scale Effect (Application of Scale Effect in Estimating Bearing Capacity and Settlement of Footing from Plate-Load Test)

  • 정형식;김도열
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.350-357
    • /
    • 2002
  • The scale effect should be considered to determine the bearing capacity and settlement of footings from Plate-Load Test, because of the size difference between a footing and a loading plate. To analyze characteristics of bearing capacity and settlement according to the difference of loading plate sizes, model tests were peformed with four different sizes of square plate, which is B=10, 15, 20 and 25cm respectively, on five different kinds of subsoil, which is pure sand(100:0), sand-clay mixed soil(75:25, 50:50, 25:75), and pure clay(0:100). Based on the analyzed results, this paper also proposed a method of bearing capacity and settlement determination, where scale effect is considered depending on the mixing ratio of sand and clay. Applying the formular proposed in this research to field problems, it is expected that evaluation of bearing capacity and settlement of footings can be more reliable and more economic construction can be achieved.

  • PDF

화강풍화토의 변형계수와 상대침하 관계식에 관한 실험적 연구 (An Experimental Study on the Relationship between Deformation and Relative Settlement for Weathered-granite)

  • 박용부
    • 토지주택연구
    • /
    • 제4권1호
    • /
    • pp.125-131
    • /
    • 2013
  • 얕은 기초 설계와 시공을 위해 실시하는 평판재하시험 결과로부터 실제 기초지반의 침하량을 산정하고 있는데 국내에서 많이 시공되는 화강풍화토나 풍화암에 대한 현장 예측식이 없는 실정이다. 따라서, 본 연구에서는 화강풍화토와 풍화암을 대상으로 현장 평판 재하시험을 실시하여 기초 크기별 침하량 거동을 분석하였다. 모형토조와 현장 재하시험에서 측정한 하중 ~ 침하 곡선을 일반적인 항복하중 판정법을 사용하지 않고 하중 ~ 상대침하(s/B, s : 침하량, B : 재하판폭) 관계로 정규화(Normalization)하여 분석하였다. 즉, 하중 ~ 상대 침하 개념으로 정규화한 결과, 재하판 직경에 관계없이 일정한 형태의 곡선을 나타내므로 현장의 지반조건과 상관성을 제시하였다.

A parametric study on buckling loads and tension field stress patterns of steel plate shear walls concerning buckling modes

  • Memarzadeh, P.;Azhari, M.;Saadatpour, M.M.
    • Steel and Composite Structures
    • /
    • 제10권1호
    • /
    • pp.87-108
    • /
    • 2010
  • A Steel Plate Shear Wall (SPSW) is a lateral load resisting system consisting of an infill plate located within a frame. When buckling occurs in the infill plate of a SPSW, a diagonal tension field is formed through the plate. The study of the tension field behavior regarding the distribution and orientation patterns of principal stresses can be useful, for instance to modify the basic strip model to predict the behavior of SPSW more accurately. This paper investigates the influence of torsional and out-of-plane flexural rigidities of boundary members (i.e. beams and columns) on the buckling coefficient as well as on the distribution and orientation patterns of principal stresses associated with the buckling modes. The linear buckling equations in the sense of von-Karman have been solved in conjunction with various boundary conditions, by using the Ritz method. Also, in this research the effects of symmetric and anti-symmetric buckling modes and complete anchoring of the tension field due to lacking of in-plane bending of the beams as well as the aspect ratio of plate on the behavior of tension field and buckling coefficient have been studied.

Evaluation of cyclic behavior of lateral load resisting system with eccentric brace and steel plate

  • Reza Khalili Sarbangoli;Ahmad Maleki;Ramin K. Badri
    • Structural Engineering and Mechanics
    • /
    • 제89권3호
    • /
    • pp.239-252
    • /
    • 2024
  • Steel plate shear walls (SPSWs) are classified as lateral load-resisting systems. The feasibility of openings in the steel plate is a characteristic of SPSWs. The use of openings in SPSWs can lower the load capacity, stiffness, and energy dissipation. This study proposes a novel form of SPSWs that provides convenient access through openings by combining steel plates and eccentrically braced frames (EBFs). The proposed system also avoids a substantial reduction in the strength and stiffness. Hence, various geometric forms were analyzed through two different structural approaches. Groups 1, 2, and 3 included a steel EBF with a steel plate between the column and EBF in order to improve system performance. In Group 4, the proposed system was evaluated within an SPSW with openings and an EBF on the opening edge. To evaluate the performance of the proposed systems, the nonlinear finite element method (NL-FEM) was employed under cyclic loading. The hysteresis (load-drift) curve, stress contour, stiffness, and damping were evaluated as the structural outputs. The numerical models indicated that local buckling within the middle plate-EBF connection prevented a diagonal tension field. Moreover, in group 4, the EBF and stiffeners on the opening edge enhanced the structural response by approximately 7.5% in comparison with the base SPSW system.

Cyclic tests and numerical study of composite steel plate deep beam

  • Hu, Yi;Jiang, Liqiang;Zheng, Hong
    • Earthquakes and Structures
    • /
    • 제12권1호
    • /
    • pp.23-34
    • /
    • 2017
  • Composite steel plate deep beam (CDB) is proposed as a lateral resisting member, which is constructed by steel plate and reinforced concrete (RC) panel, and it is connected with building frame through high-strength bolts. To investigate the seismic performance of the CDB, tests of two 1/3 scaled specimens with different length-to-height ratio were carried out under cyclic loads. The failure modes, load-carrying capacity, hysteretic behavior, ductility and energy dissipation were obtained and analyzed. In addition, the nonlinear finite element (FE) models of the specimens were established and verified by the test results. Besides, parametric analyses were performed to study the effect of length-to-height ratio, height-to-thickness ratio, material type and arrangement of RC panel. The experimental and numerical results showed that: the CDBs lost their load-carrying capacity because of the large out-of plane deformation and yield of the tension field formed on the steel plate. By increasing the length-to-height ratio of steel plate, the load-carrying capacity, elastic stiffness, ductility and energy dissipation capacity of the specimens were significantly enhanced. The ultimate loading capacity increased with increasing the length-to-height ratio of steel plate and yield strength of steel plate; and such capacity increased with decreasing of height-to-thickness ratio of steel plate and gap. Finally, a unified formula is proposed to calculate their ultimate loading capacity, and fitting formula on such indexes are provided for designation of the CDB.

실동하중에 의한 강판형철도교의 응력빈도해석 (Stress Histogram Analysis of Steel Plate Girder Railway Bridge due to Service Load Histories)

  • 황인구;김연태
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.928-933
    • /
    • 2004
  • Despite the number of steel bridges being under in service more than 50 years reaches about 50$\%$ in present, the quantitative estimation in maintenance on steel railway bridges is not possible because a ton of the field data in the bridges have not been plentifully accumulated. Therefore, a series of field tests on the steel plate girder bridge, the typical types of steel railway bridges, are executed, and the stress characteristics of main members in steel plate girder railway bridges are quantitatively estimated in this study.

  • PDF

로드셀을 이용한 STS304 박판용접부의 구속력 측정에 관한 연구 (A Study on the Measurement of Constraint Force of STS304 Thin plate Using the Load Cell)

  • 고준빈;최원두;이성구;박성두;이영호
    • Journal of Welding and Joining
    • /
    • 제19권5호
    • /
    • pp.548-554
    • /
    • 2001
  • The restraint force is required an accurate measurement and analysis to protect weldment from residual stress. Also, this residual stress caused by clacks in weldments are often observed in the weldments of large size nozzles or radial tanks after welding. This paper is preformed on the study of evaluation of welding restraint forces using load cell with STS thin plate which are using pressure vessel steel in the industry field. As a result of this study, as the welding currents are higher and the welding speeds are more slowly, the magnitude of restraint force in process of the flat plate welding hows to be more large. Also, the temperature in process of melting is increasingly rising, then the restraint forces exhibit the compressive forces, whereas the restraint forces during cooling represent extensional force.

  • PDF

로드셀을 이용한 STS304 박판용접부의 굽힘구속력과 잔류응력 측정에 관한 연구 (A Study on the Measurement of Bending Constraint Force of STS304 Thin Plate Using The Load Cell)

  • 김재온;박희상;고준빈
    • 한국공작기계학회논문집
    • /
    • 제16권6호
    • /
    • pp.86-93
    • /
    • 2007
  • The restraint force is required for the accurate measurement and analysis to protect weldment from residual stress. Also, this residual stress caused by cracks in weldments is often observed in the weldments of large size nozzles or radial tanks after welding. This paper is preformed to evaluate the welding restraint forces using load cell with STS304 thin plate which is used as the pressure vessel steel in the industry field. As a result, as the welding currents are higher and the welding speeds are more slowly, the magnitude of restraint force in process of the flat plate welding shows to be more large.

Thermal buckling and stability of laminated plates under non uniform temperature distribution

  • Widad Ibraheem Majeed;Ibtehal Abbas Sadiq
    • Steel and Composite Structures
    • /
    • 제47권4호
    • /
    • pp.503-511
    • /
    • 2023
  • Stability of laminated plate under thermal load varied linearly along thickness, is developed using a higher order displacement field which depend on a parameter "m", whose value is optimized to get results closest to three-dimension elasticity results. Hamilton, s principle is used to derive equations of motion for laminated plates. These equations are solved using Navier-type for simply supported boundary conditions to obtain non uniform critical thermal buckling and fundamental frequency under a ratio of this load. Many design parameters of cross ply and angle ply laminates such as, number of layers, aspect ratios and E1/E2 ratios for thick and thin plates are investigated. It is observed that linear and uniform distribution of temperature reduces plate frequency.