• Title/Summary/Keyword: field of energy

Search Result 5,815, Processing Time 0.04 seconds

Magnetic levitation properties of single- and multi-grain YBCO bulk superconductors

  • Kim, C.J.;Yang, A.Y.;Lee, S.H.;Jun, B.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.3
    • /
    • pp.52-56
    • /
    • 2022
  • Single-grain (c-normal or c-parallel) and multi-grain YBCO superconductors were prepared by a melt growth process with/without seeding. The magnetic levitation force and trapped magnetic field at liquid N2 temperature (77 K) of the YBCO superconductors were investigated. Samples for the levitation force measurement were zero-field cooled (ZFC) to 77 K, and samples for trapped field measurement were field-cooled (FC) using Nd magnets. As for the magnetic levitation force, the c-normal, single grain sample showed the largest value, whereas the multi-grain sample showed the lowest value. The trapped magnetic field of the c-normal and c-parallel single-grain samples was 4-5 times that of the multi-grain sample. In addition, as the external magnetic field (the number of magnets) increased, the both properties increased proportionally. These results were explained in terms of the orientation dependence of the levitation forces and the magnetic field trapping capability of the YBCO superconductor.

Measurement of Ion Energy Distribution using QMS & Ionization Enhancement by usign Magnetic Field in Triod BARE (자장을 이용한 이온화율 증대형 삼극형 BARE에서 이온화율의 증대경향과 QMS를 이용한 이온의 에너지 분포 측정)

  • 김익현;주정훈;한봉희
    • Journal of the Korean institute of surface engineering
    • /
    • v.24 no.3
    • /
    • pp.119-124
    • /
    • 1991
  • Recently, the trend of research in hard coating is concentrate on developing the process of ionization rate under low operating pressure, to get the thin film with high adhesion and dense microstructures. In this study ionization rate enhancement type PVD process using permanent magnet is developed, which enhances the ionization rate by confining the plasma suppressing the wall loss of electron. By the result to investigate the characteristic of glow discharge, the ionization rate of this process is enhanced about twice as high as that of triod BARE process (about 26%), and more dense TiN microstructures are obtained in this process. Cylindrical ion energy analyzer is made and attached in front of a quadrupole mass filter for the analysis of the energy distribution of reactive gas and activated gas ions from the plasma zone. To analyze the operation mechanism of ion energy analyzer, computer simulation is performed by calculation the electric field environment using finite element method. By these analyses of ion energy distribution of outcoming ions from the plasma zone, it is found that magnetic field enhances ion kinetic energy as well as ionization rate. The other results of this study is that the foundation of feed-back system is constructed, which automatically control the partial pressure of reactive gas. In can be possible by recording the data of mass spectrum and ion energy analysis using A-D converter.

  • PDF

Study on Thermal Dewatering of Sludge Using the Parabolic Through Collector(PTC) Solar Collector (PTC태양열 집열기를 이용한 슬러지 열탈수 연구)

  • Lee, Jung-Eun
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.3
    • /
    • pp.49-56
    • /
    • 2014
  • A fiat-plate or vacuum tube solar collector have been mainly used for hot water supply of house because of some being difficult to get uniform energy density, so little applied into industrial field. This study is to apply the PTC(parabolic trough collector) solar collector into industrial field such as sludge dewatering system for energy reduction. The real scale system which composed of PTC Solar Collector and Thermal Dewatering (TDW) is established. PTC solar collector is designed to produce a hot water with $80^{\circ}C$ of temperature. And size of TDW is $630{\times}630mm$. Hot water produced from PTC solar collector is supplied into heating plate of TDW, and sludge like waterworks or wastewater is dewatered. PTC solar collector with $10m^2$ of area produce energy of average 5,618 kcal. As according to results from real scale performance, solar collector takes charge 94 % of the amount that TDW consume energy which is so large part if compare with boiler. It means that PTC solar collector is useful to apply industrial field under the condition of sufficient solar radiation. And it is analyzed that TDW by PTC solar collector has an economical validity.

Transient loss analysis of non-insulation high temperature superconducting coil using the field-based data profiling method

  • Hoon Jung;Yoon Seok Chae;June Hee Han;Ji Hyung Kim;Seung Hoon Lee;Ho Chan Kim;Young Soo Yoon;Ho Min Kim
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.3
    • /
    • pp.38-42
    • /
    • 2023
  • The evaluation of no-insulation (NI) high-temperature superconducting (HTS) typically uses the lumped equivalent circuit (LEC) model. Constant parameters in the NI HTS LEC model accurately predict voltage and central magnetic field at currents below the critical current. However, it is difficult to find constant circuit parameters that simultaneously satisfy the measured voltage and magnetic field under overcurrent conditions. Recent research highlights changes in contact resistance during transient conditions, which may impact power loss estimation in NI HTS coils. Therefore, we confirm the influence of contact resistance changes on loss calculation in the transient state for NI HTS coil. To achieve this, we introduce a measurement data analysis method based on the LEC model and compare it with the LEC model using constant circuit parameters.

A Sutdy on the Apllicability of the Energy Pile System on Substation (변전소 구조물의 에너지파일 시스템 적용성 연구)

  • Lee, Daesoo;Oh, Gidae;Lee, Kangyul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.198-198
    • /
    • 2011
  • Cooling and Heating system using Geothermal energy in the country has shown rapid development in the research and business field during about 10 years. However, like other renewable energy sources, high initial construction cost is acting as an obstacle to apply widely. Therefore Energy pile system(Heat Exchanger inserted inside the structure pile) that can save about 25 % initial construction cost has been studied in European countries and recently being studied in our country. Therefore, KPECO(Korea Electric Power Corporation) is also studying energy pile system to improve cooling & heating system in substation that install about 200 pile. KPECO is aimed to make energy pile design, construction and maintenance standards because substation has good applicability. In this study, we studied to make new grout material and design program to make optimized design & counstruction method of energy pile system. And planing to peform field test for energy pile system in a 154 kV substation to obtain long-term behavior and efficiency of the system.

  • PDF

Modeling of a Compressed Air Energy Electrification by Using Induction Generator Based on Field Oriented Control Principle

  • Vongmanee, Varin;Monyakul, Veerapol
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1511-1519
    • /
    • 2014
  • The objective of this paper is to propose a modelling of a small compressed air energy storage system, which drives an induction generator based on a field-oriented control (FOC) principle for a renewable power generation. The proposed system is a hybrid technology of energy storage and electrification, which is developed to use as a small scale of renewable energy power plant. The energy will be transferred from the renewable energy resource to the compressed air energy by reciprocating air compressor to be stored in a pressurized vessel. The energy storage system uses a small compressed air energy storage system, developed as a small unit and installed above ground to avoid site limitation as same as the conventional CAES does. Therefore, it is suitable to be placed at any location. The system is operated in low pressure not more than 15 bar, so, it easy to available component in country and inexpensive. The power generation uses a variable speed induction generator (IG). The relationship of pressure and air flow of the compressed air, which varies continuously during the discharge of compressed air to drive the generator, is considered as a control command. As a result, the generator generates power in wide speed range. Unlike the conventional CAES that used gas turbine, this system does not have any combustion units. Thus, the system does not burn fuel and exhaust pollution. This paper expresses the modelling, thermodynamic analysis simulation and experiment to obtain the characteristic and performance of a new concept of a small compressed air energy storage power plant, which can be helpful in system designing of renewable energy electrification. The system was tested under a range of expansion pressure ratios in order to determine its characteristics and performance. The efficiency of expansion air of 49.34% is calculated, while the efficiency of generator of 60.85% is examined. The overall efficiency of system of approximately 30% is also investigated.

The Energy Saving for Separately Excited DC Motor Drive via Model Based Method

  • Udomsuk, Sasiya;Areerak, Kongpol;Areerak, Kongpan
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.470-479
    • /
    • 2016
  • The model based method for energy saving of the separately excited DC motor drive system is proposed in the paper. The accurate power loss model is necessary for this method. Therefore, the adaptive tabu search algorithm is applied to identify the parameters in the power loss model. The field current values for minimum power losses at any load torques and speeds are calculated by the proposed method. The rule based controller is used to control the field current and speed of the motor. The experimental results confirm that the model based method can successfully provide the energy saving for separately excited DC motor drive. The maximum value of the energy saving is 48.61% compared with the conventional drive method.

Prediction of free magnetic energy stored in a solar active region via a power-law relation between free magnetic energy and emerged magnetic flux

  • Magara, Tetsuya
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.69.2-69.2
    • /
    • 2014
  • To estimate free magnetic energy stored in an active region is a key to the quantitative prediction of activity observed on the Sun. This energy is defined as an excess over the potential energy that is the lowest energy taken by a magnetic structure formed in the solar atmosphere including the solar corona. It is, however still difficult to derive the configuration of a coronal magnetic field only by observations, so we have to use some observable quantity to estimate free magnetic energy. Recently, by performing a coordinated series of three-dimensional magnetohydrodynamic simulations of an emerging flux tube that transfers intense magnetic flux to the solar atmosphere we have found an universal power-law relation between free magnetic energy and emerged magnetic flux, the latter of which is a possibly observed quantity. We further investigate what causes this relation through a comparison with a model of linear force-free field.

  • PDF

Poling Field Effect on Absorption and Luminescence of Disperse Red-19 and TiO2 Composites

  • Kim, Byoung-Ju;Hwang, Un-Jei;Jo, Dong-Hyun;Lim, Sae-Han;Kang, Kwang-Sun
    • Current Photovoltaic Research
    • /
    • v.3 no.1
    • /
    • pp.5-9
    • /
    • 2015
  • Absorption and luminescence characteristics of disperse red-19 (DR-19) and $TiO_2$ composite have been investigated with various poling electric field strengths. Two step synthetic processes were employed to employ the DR-19 to the $TiO_2$ sol-gel. Firstly, urethane bond formation between DR-19 (-OH) and 3-isocyanatopropyl triethoxysilane (ICPTES, -N=C=O) performed (ICPDR) prior incorporation to the $TiO_2$ sol-gel. Secondary, the hydrolysis of the ethoxy group from the ICPTES and condensation reaction between silanol groups from ICPTES and $TiO_2$ sol-gel were performed. The ICPDR and $TiO_2$ sol-gel ($DRTiO_2$) were mixed and stirred for several days. The composite was coated to the ITO coated glass substrate. Corona poling were performed before drying the composite with various electric field strengths. The absorption intensity decreased with the increase of the poling field strength, which resulted in the increase of poling efficiency. The photoluminescence also decreased as the poling field strength increased. There is long luminescence tail for the poled $DRTiO_2$ film compared with unpoled $DRTiO_2$ film. The luminescence long tail indicates that the self-trapped excitons and polarons were generated when the $DRTiO_2$ film was poled with electric field.