• 제목/요약/키워드: field length

검색결과 3,024건 처리시간 0.038초

PLANT ROOT LENGTH DENSITY MEASUTEMENT USING IMAGE PROCESSING

  • Kim, Giyoung;David H.Vaughan
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1996년도 International Conference on Agricultural Machinery Engineering Proceedings
    • /
    • pp.792-801
    • /
    • 1996
  • A thinning algorithm -based image analysis technique was developed to measure corn root lengths. The root length measurement method was evaluated by comparing thread lengths measured by the image analysis system with actual thread lengths. The length measurement method accurately estimated actual thread lengths (less than 2% calculated error). Also, a rapid root length density measurement procedure, which utilizes the above root length measurement method, was developed to estimate corn root length density without washing the roots. Root length densities estimated from the cut soil surface of core samples taken from the field were paired with the root length densities determined from washed roots from the same soil core sample. A linear relationship between these two values was expected and was found. Eliminating the root washing procedure reduces the time required for measuring corn root length density substantially.

  • PDF

전극길이 변화에 따른 실린더 형태 ER밸브의 성능고찰 (Performance Investigation of Cylindrical-Type ER Valves With Different Electrode Length)

  • 전영식
    • 한국생산제조학회지
    • /
    • 제7권6호
    • /
    • pp.1-11
    • /
    • 1998
  • This paper presents performance analyses of three types of the cylindrical-type ER(electro-rheo-logical) valves, which have different electrode length and width but same electrode area. Following the composition of silicone oil-based ER fluid, the field-dependent yield stresses are obtained from experimental investigation on the Bingham property of the ER fluid. The ER valve which is dependent on the applied electric field is devised and its theoretical model is derived. On the basis of the pressure-drop analysis, three types of the ER valves are designed and manufactured. After experimentally evaluation field-dependent pressure drops, PI controller is formulated to achieve tracking control on desired pressure drop. The controller is then experimentally implemented and tracking control performance is presented in order to demonstrate superior controllability of the ER valve. In addition, the response characteristic of the ER valve with respect to the excitation frequency of the electric fiedls is provided to show the feasibility of practical application.

  • PDF

평판형 ER-Valve의 제작 및 성능실험 (Design and Performance Test of Plate Type ER-Valve)

  • 장성철;염만오
    • 한국공작기계학회논문집
    • /
    • 제12권6호
    • /
    • pp.29-35
    • /
    • 2003
  • In this research 4 plate type ER-Valves which have same surface but different width and length are designed and an experimental apparatus is constructed. With this experimental apparatus, flow rate and pressure drop of ER fluid flowing in ER-valves are measured with varying electric field strength of ER-valve, and relation between valve types and pressure drop is also experimented. ER fluid is made silicon oil mixed with 40wt% starch having hydrous particles. If we allow the same electric field in the ER-Valve, we came to how that the pressure drop is effected by the electrode length and electrode width. When the strength of the electric field increased, the pressure drop happened big and the flow rate decreased.

Determination of stress state in chip formation zone by central slip-line field

  • Andrey Toropov;Ko, Sung-Lim
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.577-580
    • /
    • 2003
  • Stress state of chip formation zone is one of the main problems in metal cutting mechanics. In two-dimensional case this process is usually considered as consistent shears of work material along single of several shear surfaces. separating chip from workpiece. These shear planes are assumed to be trajectories of maximum shear stress forming corresponding slip-line field. This paper suggests new approach to the constriction of slip-line field, which Implies uniform compression in chip formation zone. On the base of given model it has been found that imaginary shear line in orthogonal cutting is close to the trajectory of maximum normal stress and the problem about its determination have been considered. It has been shown that there is a second central slip-line field inside chip, which corresponds well to experimental data about stress distribution on tool rake face and tool-chip contact length. The suggested model could be useful in solution of various problems of machining.

  • PDF

Dependence of GMI Profile on Size of Co-based Amorphous Ribbon

  • Jin, L.;Yoon, S.S.;Kollu, P.;Kim, C.G.;Suhr, D.S.;Kim, C.O.
    • Journal of Magnetics
    • /
    • 제12권1호
    • /
    • pp.31-34
    • /
    • 2007
  • The Co-based ribbons with different length were annealed in different magnetic field and GMI profiles were investigated in order to clarify the influence of ribbon size on GMI effect. The GMI ratio decreased with the decreasing in length and also decreased with increasing annealing field. While, the slope of GMI profiles inclined and the field range showing linearity was broadened. It shows prospect to low field sensor, especially for a navigation sensor.

건강가정현장실습 운영실태와 개선방안에 관한 연구 (A Study on the Actual Condition and Suggestions for Improvement in the Operation of the Field Practicum for Healthy Family)

  • 손여경;이송이
    • 가족자원경영과 정책
    • /
    • 제13권3호
    • /
    • pp.247-280
    • /
    • 2009
  • The purpose of this study was to investigate the actual conditions of management of the healthy family field practicum and to present suggestions for its improvement. For this purpose, a preliminary investigation, survey, data analysis, interview as secondary source, and final data analysis were processed as research methods. The subjects of this study were the 42 supervisors in the centers which oversee the field practicum experience and the 12 supervisors in the centers which do not oversee the field practicum experience. 3 supervisors were interviewed to inquire about the reformation of field instruction in Healthy Family Support Centers. Analysis was made of the general characteristics of the above-mentioned 54 supervisors, including sex, age, academic background, certificate of qualification, class of position, and length of career related to the healthy family program. The environment of the field practice, such as the numbers of students supervised, time of field practice, practice hours, and so on, was examined in the centers which oversee the field practicum experience. The actual condition of operation investigated was divided into the preparatory stage, the early stage, the midterm stage, and the end stage. Research was conducted on the improvement of the field practicum, including the proper number of students supervised, adequate practice hours, interaction with universities or colleges, obstacles to the field practicum, and of practicum. The possibility and preparation of a further field practicum was conducted for 12 Healthy Family Support Centers, by inquiring about (a) the reasons for not overseeing the field practicum experience and (b) the needs of universities or colleges for a field practicum. The 54 supervisors surveyed suggested a particular need for improvement in human resources, the space of field instruction, system of field practicum, length of practice hours, orientation for students etc. This study investigated the actual conditions and suggested improvements of the field practicum in Healthy Family Support Centers. Therefore, its results should be meaningfully used to develop the Field Practicum for the Healthy Family and to conduct further studies.

  • PDF

정밀농업을 위한 트랙터-작업기의 최적 경로계획 (Optimal Path Planning of a Tractor-implement for Precision Farming)

  • 정선옥;박우풍;장영창;여운영
    • Journal of Biosystems Engineering
    • /
    • 제24권4호
    • /
    • pp.301-308
    • /
    • 1999
  • Path planning for field operation of agricultural machinery is an indispensible part for precision farming or autonomous field operation. In this study, two algorithms (I, II) of generating a time-based shortest operation path were suggested to plan an optimal operation of an agricultural tractor-implement in a rectangular shaped field. The algorithms were based on modification of a minimum spanning tree algorithm, and applied for tractor-implement operations. the generated path was consisted of round operation and returning operation sections. The number of round operation was determined from the condition that a tractor can turn smoothly at headlands. The performance of the algorithms was evaluated by the calculation number for path generation and the total path length generated. Their stability was affected by the number of returning operation, but the algorithm II was considered to be more stable. In addition, the performances of the developed algorithms were compared with those of the conventional field operations at selected field sizes and shapes. The results showed that the algorithms could reduce field operation time greatly. For a 100m$\times$40m field, the reduced path length was 78m. The study also included an user interface program for implementing the algorithms and generating GPS coordinates that could be used in GIS softwares for precision farming.

  • PDF

Effects of root nodules on the plant type in soybean-Especially internode length and petiole length on the main stem

  • Ohashi, Shuma;Kurita, Haruna;Takahashi, Yukitsugu;Nagasuga, Kiyoshi;Nagaya, Yuichi;Umezaki, Teruhisa
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.358-358
    • /
    • 2017
  • The plant type is generally one of the most important factor for crop production and be influenced by nitrogen absorption. Soybean plants have nodules in their roots, supplying nitrogen at the vegetative and reproductive stages. Root nodules seem to effect plant type of soybean plants, but there are few reports on the relation nodules and plant type. We tried to clarify the effects of root nodules on the plant type, especially internode length and petiole length, comparing non-nodule soybean with normal soybean. The pot experiment and field experiment were carried out at Mie University and Utsunomiya University in 2015 and 2016. Enrei, a popular cultivar in central Japan, and En1282, non-nodulating isogenic line of Enrei, were used. The petiole length on main stem was measured after defoliation and internode length and yield components were measured after harvest. In the field experiment, the patterns of the final length in internode and petiole on main stem were consistent in both cultivars, and a positive correlation was found between the Nth petiole length and the N-1th internode length, belong to the same phytomere. Therefore, the petiole and internode on the main stem make similar response for environmental factors. In pot experiment, Enrei grew with the same pattern as field experiments, but in En1282, the elongation of petiole and internode in the upper part was suppressed, especially the petiole was suppressed greatly. The main stem becomes the basis of the plant type. These results were considered that the nitrogen is distributed preferentially to the internode than the petiole. It seems that the pot cultivation restricted the rhizosphere and caused nitrogen deficiency in En1282. These results suggested that the slight nitrogen deficiency provided from the root nodules was compensated by the increase of the amount of inorganic nitrogen absorption due to the expansion of the rhizosphere, and the severe nitrogen deficiency suppressed elongation of petiole and internode. It is clear that root nodules effect the plant type by supplying nitrogen to internodes and petioles.

  • PDF

2차원 초공동 유동의 중력과 자유표면 효과에 대한 수치해석 (A Numerical Analysis of Gravity and Free Surface Effects on a Two-Dimensional Supercavitating Flow)

  • 김형태;이현배
    • 대한조선학회논문집
    • /
    • 제51권5호
    • /
    • pp.435-449
    • /
    • 2014
  • The effects of the gravity field and the free surface on the cavity shape and the drag are investigated through a numerical analysis for the steady supercavitating flow past a simple two-dimensional body underneath the free surface. The continuity and the RANS equations are numerically solved for an incompressible fluid using a $k-{\epsilon}$ turbulence model and a mixture fluid model has been applied for calculating the multiphase flow of air, water and vapor using the method of volume of fluid and the Schnerr-Sauer cavitation model. Numerical solutions have been obtained for the supercavitating flow about a two-dimensional $30^{\circ}$ wedge in wide range of depths of submergence and inflow velocities. The results are presented for the cavity shape, especially the length and the width, and the drag of the wedge in comparison with those of the case for the infinite fluid flow neglecting the gravity and the free surface. The influences of the gravity field and the free surface on the aforementioned quantities are discussed. The length and the width of the supercavity are reduced and the centerline of the cavity rises toward the free surface due to the effects of the gravity field and the free surface. The drag coefficient of the wedge, however, is about the same except for shallow depths of submergence. As the supercavitating wedge is approaching very close to the free surface, it is found the length and the width of a cavity are shorten even though the cavitation number is reduced. Also the present result suggests that, under the influence of the gravity field and the free surface, the length of the supercavity for a certain cavitation number varies and moreover is proportional to the inverse of the submergence depth Froude number.

TMD parameters optimization in different-length suspension bridges using OTLBO algorithm under near and far-field ground motions

  • Alizadeh, Hamed;Lavasani, H.H.
    • Earthquakes and Structures
    • /
    • 제18권5호
    • /
    • pp.625-635
    • /
    • 2020
  • Suspension bridges have the extended in plan configuration which makes them prone to dynamic events like earthquake. The longer span lead to more flexibility and slender of them. So, control systems seem to be essential in order to protect them against ground motion excitation. Tuned mass damper or in brief TMD is a passive control system that its efficiency is practically proven. Moreover, its parameters i.e. mass ratio, tuning frequency and damping ratio can be optimized in a manner providing the best performance. Meta-heuristic optimization algorithm is a powerful tool to gain this aim. In this study, TMD parameters are optimized in different-length suspension bridges in three distinct cases including 3, 4 and 5 TMDs by observer-teacher-learner based algorithm under a complete set of ground motions formed from both near-field and far-field instances. The Vincent Thomas, Tacoma Narrows and Golden Gate suspension bridges are selected for case studies as short, mean and long span ones, respectively. The results indicate that All cases of used TMDs result in response reduction and case 4TMD can be more suitable for bridges in near and far-field conditions.