• Title/Summary/Keyword: field instrument

Search Result 568, Processing Time 0.028 seconds

Development of an Instrument to Assess Secondary School Students' Conceptions of the Nature of Science (중등 학교 학생들의 과학의 본성 개념을 측정하기 위한 도구 개발)

  • Soh, Won-Ju;Kim, Beom-Ki;Woo, Jong-Ok
    • Journal of The Korean Association For Science Education
    • /
    • v.18 no.2
    • /
    • pp.127-136
    • /
    • 1998
  • The purpose of this study was to develop, field test an instrument to assess secondary school students' conceptions of the nature of science. The instrument named Philosophical Perspectives Probe(PPP) is a pool of 24 multiple-choice items that address a wide range of philosophical topics of science. The statements and the choices of this instrument were derived from an analysis of various philosophical positions. The main philosophical systems of the instrument are inductivism, falsificationism, and relativism, respectively. Major distinctions depend on the issues of the criteria of demarcation, patterns of scienctific change, epistemological status of scientific knowledge, and the scientific methods. The researchers also offer teachers a new way of assessing and interpreting their students' conceptions on a wide variety of topics related to the nature of science.

  • PDF

A NEW METHOD - REAL TIME MEASUREMENT OF THE INITIAL DYNAMIC VOLUMETRIC SHRINKAGE OF COMPOSITE RESINS DURING POLYMERIZATION (복합레진의 초기 동적 체적 중합수축의 실시간 측정 -새로운 측정장치의 개발에 대한 소고-)

  • 이인복
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.2
    • /
    • pp.134-140
    • /
    • 2001
  • The polymerization shrinkage of composite resins is an important drawback although the composites have many advantages-more esthetic and conservative than metallic restoratives etc. The purposes of this research were to develop a new measurement method and to manufacture an instrument that can measure the initial dynamic volumetric shrinkage of composite resins during polymerization. The instrument was basically an electromagnetic balance that constructed with a force transducer using position sensitive photo detector(PSPD) and a negative feedback servo amplifier of proportional-derivative(PD) controller. The volumetric change of composites during polymerization was detected continuously as buoyancy change in distilled water by means of Archimedes's principle. It was converted to continuous electrical voltage signal in real time. The signal was properly conditioned and filtered and then it was stored in computer by a data acquisition(DAQ) board. By using this electronic instrument. the dynamic patterns of the polymerization shrinkage of eight commercial(Z-100, DenFil, AeliteFil, Z-250, P-60, SureFil, Synergy compact, and Tetric ceram) composite resins were measured and compared. The results were as follows. 1. From this project of developing instrument, the ability has been achieved that can acquire and process data of electrical signal transformed from various physical phenomenon by using temperature, displacement. photo. and force transducer. As a consequence, the instrumentation and measurement system used to analyze the physical characteristics of various dental materials in dental research field can be designed, manufactured and implemented in lab. 2. This instrument has some advantages. It was insensible to temperature change and could measure true dynamic volumetric shrinkage in real time without complicated process. It showed accuracy and high precision results with small standard deviation. 3. The polymerization shrinkage of composites was significantly different between brands and ranged from 2.47% to 3.89%, The order of polymerization shrinkage was as follows, in order of increasing shrinkage, SureFil, P60, Z250, Z100, Synergy compact. DenFil, Tetric ceram, and AeliteFil. 4. The polymerization shrinkage rate per unit time, dVol%/dt, showed that the instrument can provide an indirect research method for polymerization reaction kinetics.

  • PDF

The Development of An Instrument for Evaluating Inquiry Activity in Science Curricula (과학 탐구 평가표의 개발)

  • Hur, Myung
    • Journal of The Korean Association For Science Education
    • /
    • v.4 no.2
    • /
    • pp.57-63
    • /
    • 1984
  • An inquiry approach in teaching science has been advocated by many science educators for the past few decades, and most elementary and secondary science curricula have incorporated it in varying degrees. It has been proven in recent studies, however, that there exists considerable discrepancy between the expectation of outcomes of the inquiry approach and the actuality. This in part implies that there is a somewhat urgent need for the systematic evaluation of the approach in teaching science. The purpose of this study is to develop a comprehensive instrument for evaluating inquiry teaching approaches embedded in science curricular materials. To develop a more valid and reliable instrument a set of empirical data was used in the developmental procedure, and most of the previous studies regarding inquiry teaching method and inquiry evaluation were consulted. The inquiry evaluation method developed in this study, called the Scientific Inquiry Evaluation Inventory (SIEI), is composed of three parts: (1) analyzing and coding each science process task of inquiry activity; (2) evaluating each inquiry activity as a whole; and (3) evaluating each science laboratory curriculum as a whole. The first part of the instrument consists of twenty science process categories and thirty subcategories grouped into four sections: (1) gathering and organizing data; (2) interpreting and analyzing data; (3) synthesizing results and evaluation; and (4) hypothesizing and designing an experiment. The science process categories are arranged according to the level of difficulty, psychological level of thinking, degree of creativity demand, and the model of the process of scientific inquiry, which is also developed in the study. The second part of the instrument contains four evaluation scales of inquiry activity: (1) competition/cooperation scale; (2) discussion scale; (3) openness scale; and (4) inquiry scope scale. And the last part consists of three methods for evaluating a science laboratory curriculum as a whole: (1) inquiry pyramid; (2) inquiry index; and (3) difficulty index. The instrument is designed to be used by teachers, science curriculum developers and science education evaluators for the purpose of diagnosing the nature and appropriateness of scientific inquiry introduced in secondary science curricular materials, especailly in laboratory work and field work.

  • PDF

Development of a Test of Science Inquiry Skills for Elementary School Fifth and Sixth Graders (초등학교 고학년 학생의 과학 탐구능력 측정을 위한 평가 도구 개발)

  • Song, Kyoung-Hye;Lee, Hang-Ro;Lim, Cheong-Hwan
    • Journal of The Korean Association For Science Education
    • /
    • v.24 no.6
    • /
    • pp.1245-1255
    • /
    • 2004
  • The purpose of this study is to develop a valid and reliable evaluating instrument for elementary school fifth and sixth graders. The instrument is developed through R&D procedure, which includes two checks of science specialist and two field trials of the instrument. Evaluating items are content-free for each science inquiry skill. Each science inquiry element is based on SAPA and the 7th curriculum. This study has selected 10 science inquiry skills(observing, classifying, measuring, predicting, inferring, recognizing of a problem, controlling variables, interpreting data, drawing a conclusion, designing an experiment), formulated a clear definition of the elements of science inquiry skills, and established the objectives of evaluation. The content areas are divided into three categories, material and energy, life and environment, and the earth and circulation. Each category contains 10 items. So the instrument consists of 30 items. The content validity of items, objectivity of the scoring keys, and clarity of the items has been checked twice by specialists in science education. At the same time, two field trials were performed to produce the reliability of the instruments, discrimination index, and item difficulty index. The instrument has the content validity is 91.6%, reliability 0.79, objectivity 93.3%, discrimination index 0.30, and item difficulty index 66.1%.

The Design and Study of Virtual Sound Field in Music Production

  • Wang, Yan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.7
    • /
    • pp.83-91
    • /
    • 2017
  • In this paper, we propose a thorough solution for adjusting virtual sound field with different kinds of devices and software in preliminary procedure and late stage of music processing. The basic process of music production includes composing, arranging and recording at pre-production stage as well as sound mixing and mastering at post-production stage. At the initial stage of music creation, it should be checked whether the design of virtual sound field, the choice of the tone and the instrument used in the arrangement match the virtual sound field required for the final work. In later recording, mixing and mastering, elaborate adjustments should be done to the virtual sound field. This study also analyzed how to apply the parameter of the effectors to the design and adjustment of the virtual sound field, making it the source of our creation.

The Effect of Field-Experience Learning Activites Program for the Integrated Textbook on the Environmental Attitude of Elementary School Students (통합교과적 체험 환경교육 프로그램이 초등학생의 환경태도에 미치는 영향)

  • Chang Hyoung-Joo;Shin Young-Joon
    • Journal of Korean Elementary Science Education
    • /
    • v.24 no.5
    • /
    • pp.495-503
    • /
    • 2005
  • The purpose of this study was to analyze elementary school students' attitudes through field-experience teaming activities program for the integrated textbook on the environment issues. This study was conducted after implementing the field environmental education for fifth graders with the teaching-teaming plan applied to the field education and was based on the analysis of environment-related education for the fifth graders. A total of 64 elementary students, 32 in the experimental group and 342 in the control group, were involved in this study. The study used the instrument consisting of 36 Likert-type questions on attitudes toward environment. After going over the influences of the field environmental education program on the students, we found out the positive development in the pre-test and post-test, concerning all environmental themes, especially in the field of protection of animals, environmental pollution, and environment in general.

  • PDF

DESIGN AND PRELIMINARY TEST RESULTS OF MAGNETOMETERS (MAG/AIM & SIM) FOR SOUNDING ROCKET KSR-III (KSR-III 과학 관측 로켓 자력계(MAG/AIM & SIM)의 초기 시험 모델 개발)

  • KIM HYO-MIN;JANG MIN-HWAN;SON DE-RAC;LEE DONG-HUN;KIM SUN-MI;HWANG SEUNG-HYUN
    • Publications of The Korean Astronomical Society
    • /
    • v.15 no.spc2
    • /
    • pp.57-64
    • /
    • 2000
  • It is realized that the extraterrestrial matter is in ionized state, plasma, so the matter of this kind behaves as not expected because of its sensitiveness to electric and magnetic fields and its ability to carry electric currents. This kind of subtle change can be observed by an instrument for the magnetic field measurement, the magnetometer usually mounted on the rocket and the satellite, and based on the ground observatory. The magnetometer is a useful instrument for the spacecraft attitude control and the Earth's magnetic field measurements for the scientific purpose. In this paper, we present the preliminary design and the test results of the two onboard magnetometers of KARl's (Korea Aerospace Research Institute) sounding rocket, KSR­III, which will be launched during the period of 2001-02. The KSR-III magnetometers consist of the fluxgate magnetometer, MAG/AIM (Attitude Information Magnetometer) for acquiring the rocket flight attitude information, and of the search-coil magnetometer, MAG/SIM (Scientific Investigation Magnetometer) for the observation of the Earth's magnetic field fluctuations. With the MAG/AIM, the 3-axis attitude information can be acquired by the comparison of the resulting dc magnetic vector fields with the IGRF (International Geomagnetic Reference Field). The Earth's magnetic field fluctuations ranging from 10 to 1,000 Hz can also be observed with the MAG/SIM measurement.

  • PDF

Can't See the Trees for the Forest? Why IS-ServQual Items Matter

  • Rabaa'i, Ahmad A.;Tate, Mary;Gable, Guy
    • Asia pacific journal of information systems
    • /
    • v.25 no.2
    • /
    • pp.211-238
    • /
    • 2015
  • Despite longstanding concern with the dimensionality of the service quality construct as measured by ServQual and IS-ServQual instruments, variations on the IS-ServQual instrument have been enduringly prominent in both academic research and practice in the field of IS. We explain the continuing popularity of the instrument based on the salience of the item set for predicting overall customer satisfaction, suggesting that the preoccupation with the dimensions has been a distraction. The implicit mutual exclusivity of the items suggests a more appropriate conceptualization of IS-ServQual as a formative index. This conceptualization resolves the paradox in IS-ServQual research, that of how an instrument with such well-known and well-documented weaknesses continue to be very influential and widely used by academics and practitioners. A formative conceptualization acknowledges and addresses the criticisms of IS-ServQual, while simultaneously explaining its enduring salience by focusing on the items rather than the "dimensions." By employing an opportunistic sample and adopting the most recent IS-ServQual instrument published in a leading IS journal (virtually, any valid IS-ServQual sample in combination with a previously tested instrument variant would suffice for study purposes), we demonstrate that when re-specified as both first-order and second-order formatives, IS-ServQual has good model quality metrics and high predictive power on customer satisfaction. We conclude that this formative specification has higher practical use and is more defensible theoretically.

Alternative analytic method for computing mean observation time in space-telescopes with spin-precession attitude motion

  • Juan, Bermejo-Ballesteros;Javier, Cubas;Francisco, Casas;Enrique, Martinez-Gonzalez
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.5
    • /
    • pp.449-462
    • /
    • 2022
  • Space-telescopes placed in the Sun-Earth second Lagrange point (L2) observe the sky following a scan strategy that is usually based on a spin-precession motion. Knowing which regions of the sky will be more observed by the instrument is important for the science operations and the instrument calibration. Computing sky observation parameters numerically (discretizing time and the sky) can consume large amounts of time and computational resources, especially when high resolution isrequired.This problem becomesmore critical if quantities are evaluated at detector level instead of considering the instrument entire Field of View (FoV). In previous studies, the authors have derived analytic solutions for quantities that characterize the observation of each point in the sky in terms of observation time according to the scan strategy parameters and the instrument FoV. Analytic solutions allow to obtain results faster than using numerical methods as well as capture detailed characteristics which can be overseen due to discretization limitations. The original approach is based on the analytic expression of the instrument trace over the sky. Such equations are implicit and thusrequiresthe use of numeric solversto compute the quantities.In this work, a new and simpler approach for computing one ofsuch quantities(mean observation time) is presented.The quantity is first computed for pure spin motion and then the effect of the spin axis precession is incorporated under the assumption that the precession motion is slow compared to the spin motion.In this sense, this new approach further simplifies the analytic approach, sparing the use of numeric solvers, which reduces the complexity of the implementation and the computing time.

Tendency of Calibration and Test for Acoustic Field in KRISS (KRISS에서 수행된 음향관련 교정 및 시험 동향)

  • 서재갑;권휴상;정성수;조문재;서상준
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.448-452
    • /
    • 2002
  • We report the number of calibration and test for acoustic field which were conducted in KRISS between the year of 1990 and 2001. The items contain sound level meter and calibrator for calibration and sound absorption coefficient, transmission loss, sound pressure level of siren, sound pressure level and power of acoustic instrument and relative accessories for test. The data show that the number of them have been increased continuously.

  • PDF