• Title/Summary/Keyword: field cultivation

Search Result 1,367, Processing Time 0.028 seconds

Effects of Continuous Application of Green Manures on Microbial Community in Paddy Soil

  • Kim, Sook-Jin;Kim, Kwang Seop;Choi, Jong-Seo;Kim, Min-Tae;Lee, Yong Bok;Park, Ki-Do;Hur, Seonggi
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.528-534
    • /
    • 2015
  • Green manure crops have been well recognized as the alternative for chemical fertilizer, especially N fertilizer, because of its positive effect on soil and the environment. Hairy vetch and green barley are the most popular crops for cultivation of rice in paddy field. This study was conducted to evaluate effects of hairy vetch and green barley on soil microbial community and chemical properties during short-term application (three years). For this study, treatments were composed of hairy vetch (Hv), green barley (Gb), hairy vetch + green barley (Hv+Gb), and chemical fertilizer without green manure crops (Con.). Hv+Gb treatment showed the highest microbial biomass among treatments. Principal component analysis (PCA) showed that PC1 (73.0 %) was affected by microbial biomass and PC2 (21.5 %) was affected by fungi, cy19:0/18:$1{\omega}7c$ (stress indicator). Combined treatment with hairy vetch and green barley could be more efficient than green manure crop treatment as well as chemical fertilizer treatment for improvement of soil microorganisms.

Analysis of Groundwater Level Changes Near the Greenhouse Complex Area Using Groundwater Monitoring Network (지하수관측망을 이용한 강변 시설재배지역 지하수위 변화 특성 분석)

  • Baek, Mi Kyung;Kim, Sang Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.6
    • /
    • pp.13-23
    • /
    • 2022
  • The purpose of this study was to analyze the impact of greenhouse cultivation area and groundwater level changes due to the water curtain cultivation in the greenhouse complexes, which are mainly situated along rivers where water resources are easy to secure. The groundwater observation network in Miryang, Gyeongsangnam-do, located downstream of the Nakdong River, was selected for the study area. We classified the groundwater monitoring well into the greenhouse (riverside) and field cultivation areas (plain and mountain) to compare the groundwater impact of water curtain cultivation in the greenhouse complex. The characteristics of groundwater level changes classified by terrain type were analyzed using the observed data. Riverside wells have significant permeability coefficients and are close to rivers, so they are greatly affected by river flow and precipitation changes so that water level shows a specific pattern of annual changes. Most plain wells do not show a constant annual change, but observation wells near small rivers and small-scale greenhouse cultivation areas sometimes show annual and daily changes in which the water level drops during winter. Compared to other observation wells, mountain wells do not show significant yearly changes in water level and show general characteristics of bedrock aquifer well with a low permeability coefficient.

Time-series Analysis and Prediction of Future Trends of Groundwater Level in Water Curtain Cultivation Areas Using the ARIMA Model (ARIMA 모델을 이용한 수막재배지역 지하수위 시계열 분석 및 미래추세 예측)

  • Baek, Mi Kyung;Kim, Sang Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.2
    • /
    • pp.1-11
    • /
    • 2023
  • This study analyzed the impact of greenhouse cultivation area and groundwater level changes due to the water curtain cultivation in the greenhouse complexes. The groundwater observation data in the Miryang study area were used and classified into greenhouse and field cultivation areas to compare the groundwater impact of water curtain cultivation in the greenhouse complex. We identified the characteristics of the groundwater time series data by the terrain of the study area and selected the optimal model through time series analysis. We analyzed the time series data for each terrain's two representative groundwater observation wells. The Seasonal ARIMA model was chosen as the optimal model for riverside well, and for plain and mountain well, the ARIMA model and Seasonal ARIMA model were selected as the optimal model. A suitable prediction model is not limited to one model due to a change in a groundwater level fluctuation pattern caused by a surrounding environment change but may change over time. Therefore, it is necessary to periodically check and revise the optimal model rather than continuously applying one selected ARIMA model. Groundwater forecasting results through time series analysis can be used for sustainable groundwater resource management.

Analysis of Groundwater Conductivity and Water Temperature Changes in Greenhouse Complex by Water Curtain Cultivation (수막용수 사용으로 인한 시설재배지역의 지하수 수온과 전기전도도 변화 특성 분석)

  • Baek, Mi Kyung;Kim, Sang Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.6
    • /
    • pp.93-103
    • /
    • 2023
  • This study aimed to analyze the impact of water curtain cultivation in the greenhouse complexes on groundwater's electric conductivity and water temperature. The greenhouse complexes are mainly situated along rivers to secure water resources for water curtain cultivation. We classified the groundwater monitoring well into the greenhouse (riverside) and field cultivation areas (plain) to compare the groundwater impact of water curtain cultivation in the greenhouse complex. The groundwater observation network in Miryang, Gyeongsangnam-do, located downstream of the Nakdong River, was selected for the study area. As a result of analyzing the electric conductivity and water temperature, the following differences were found in the observed characteristics by region. 1) The electric conductivity and water temperature of the riverside area, where the permeability is high and close to rivers, showed a constant pattern of annual changes due to the influence of river flow and precipitation. 2) The flat land in general agricultural areas showed general characteristics of bedrock observation in the case of water temperature. Still, it seemed more affected by the surrounding well's water use and water quality. The electric conductivity did not show any particular trend and was influenced by the surrounding environment according to the location of each point.

Effect of continuous maize cultivation on soil condition and yield in Northern Laos

  • Fujisao, Kazuhiko;Khanthavong, Phanthasin;Oudthachit, Saythong;Matsumoto, Naruo;Homma, Koki;Asai, Hidetoshi;Shiraiwa, Tatsuhiko
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.346-346
    • /
    • 2017
  • In Northern Laos, maize is cultivated in continuous cropping without fertilizer, fallowing nor any other soil conservation practice. It is expected that this inadequate management in maize cultivation will degrade soil and decrease yield. However, there is limited information about the change of soil condition and yield under continuous maize cultivation. We tried to evaluate the change of soil condition and yield under continuous maize cultivation in Northern Laos. Our study was conducted in farmer's flat and slope fields in Sainyabuli province where maize cultivation had been introduced earlier than the other provinces of Northern Laos. Our study was conducted in 21 fields in 2014, and in 19 fields in 2015. We analyzed grain yield and soil characteristic (total carbon (TC), total nitrogen (TN), available phosphorus (Av-P), exchangeable cation, pH, soil texture) at 3 places in each field. The 3 places were set at different elevation level (lower position, middle position, upper position) in slope fields. Further, the period of continuous maize cultivation and crop management practice were investigated. Then, by evaluating the relation between the period of continuous maize cultivation and yield and the soil characteristics, the effect of maize cultivation was estimated. Crop management practices were similar among the investigated fields. Maize was cultivated in rain season. Grain seed and cob were harvested on September or October, but shoot was left on the fields. No crop was cultivated during dry season. Fertilization and fallowing has never been conducted under continuous maize cultivation. On the other hand, the period of maize cultivation was different among the fields, and ranged from 2 years to 30 years. In the slope fields, as the period of continuous maize cultivation was longer, the contents of TC and TN were lower at all 3 positions, Av-P content was lower at the upper position, exchangeable potassium (Ex-K) content was lower at the middle and the upper positions. The other soil characteristics weren't related with the period of maize cultivation in the slope fields. In contrast, soil characteristics weren't related with the period of maize cultivation in the flat fields. Yield was lower as the period of maize cultivation was longer at the upper position of the slope fields. At middle position of slope fields, yield tended to be low with increase of the period of maize cultivation. In contrast, yield wasn't related with the period of continuous maize cultivation in flat fields. From the results about crop management, it was presumed that the period of maize cultivation was one of the main factors causing the difference of yield and soil characteristics among the fields. Therefore, from the result of yield and soil condition, it was considered that the continuous maize cultivation decreased soil productivity in the slope fields with decline of TC, TN, Av-P, Ex-K and yield at upper position of slope fields, and decline of TC and TN in the other positions in Sainyabuli province.

  • PDF

Grain cultivation traceability system using ICT for smart agriculture (스마트 농업 구현을 위한 ICT기반 곡물 재배이력관리 시스템)

  • Kim, Hoon;Kim, Oui-Woong;Lee, Hyo-Jai
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.5
    • /
    • pp.389-396
    • /
    • 2020
  • In this paper, a cultivation traceability system to implement smart agriculture developed and implemented, and in particular, devised a system that manages the cultivation traceability of grains that are difficult to grow in smart farms. Mobile and web programs based on smart devices are designed, and the collected information is stored in a DB server and can be used as big data. In addition, real-time location information and agricultural activity information can be matched using an electronic map(Vworld) based on GIS/LBS applying GPS of a mobile device. By designing the cultivation traceability information DB required in the field, the farmhouse, farmers, and cultivation information were developed to make it easy for managers to use, and implemented mobile and web programs in the field. The system is expected to raise the quality and safety management capabilities to the next level in response to variables such as labor saving effect and climate change.

Evaluation of the Potential for Environment-Friendly Cultivation of Potato cv. 'Haryeong' (감자 '하령' 품종의 친환경재배 가능성 평가)

  • Park, Young-Eun;Jeong, Jin-Cheol;Cho, Hyun-Mook;Cho, Ji-Hong
    • Korean Journal of Breeding Science
    • /
    • v.40 no.3
    • /
    • pp.258-262
    • /
    • 2008
  • The experiment was conducted to investigate the potential for environmentally friendly cultivation of cv. Haryeong, which was bred by the National Institute of Highland Agriculture in 2006, through evaluation of the late blight field resistance at the farmer's practices level. cv. Haryeong showed higher field resistance to late blight as 590.3 in mean Area Under the Disease Progress Curve (AUDPC) during the cultivation period than cv. Superior as 1377.7 in AUDPC. However there was no observed different trend among the experimental treatments. Mean of tuber yield of cvs. Haryeong and Superior were 2,870 kg/10a and 2,301 kg/10a, respectively, and in all experimental treatments Haryeong was 25% higher than those of Superior. Mean of dry matter content of Haryeong and Superior were 18.1% and 16.1%, respectively, and there were no significant differences among the experimental treatments. cv. Haryeong was confirmed as a suitable cultivar for environmentally friendly cultivation in this experiment. In the future, additional research on fertilization and disease management will be required.

Effecets of Bacillus subtilis on Growth of Seedings in Corn ( Zea mays L. ) , White Clover ( Trifolium repens L. ) and Tall Fescue ( Festuca arundinacea Schreb. ) (Bacillus subtilis가 Corn ( Zea mays L. ) , White Clover ( Trifolium repens L. ) 및 Tall Fescue ( Festuca arundinacea Schreb. ) 유식물의 생육에 미치는 영향)

  • Park, Ki-Chun;Chang Youn;Kim, Dong-Am
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.18 no.3
    • /
    • pp.195-204
    • /
    • 1998
  • This study was designed to investigate the effects of antagonistic microorganism, Bacillus subtilis, on the growth of forage seedlings in repeated cultivation soils and unrepeated cultivation soils. The field experiment was wnducted in pots in a vinyl house using repeated and unrepeated cultivation soils. Forage types were 'Suwon 19' wrn(Zea mqs L.), 'Califbmia' white clover(Tr~oIium repens L.) and 'Fawn' tall fescue (Festuca arundianacea Schreb.). Samples of white clover and tall fescue were taken h m each pot at 36 days after seeding. Samples of wm were examined at 50 days after seeding. The most active antagonistic bacterium was isolated h m forage rhizosphere soil, and selected by reference to it's antagonistic ability on the growth of pathogenic fungi, Rhizoctonia solmi and Fusarium oxyspomm, and it was identified as Bacillus subtilis. This strain strongly suppressed the growth of fungal pathogens among isolated rhizobacteria. The dry weight of forage shoots and roots cultivated in unrepeated cultivation soils was higher than that cultivated in repeated cultivation soils. The dry weight of forage was positively affected by the inoculation of the antagonistic bacterium, Bacillus subtilis, in both repeated cultivation soils and unrepeated cultivation soils. In conclusion, the growth of forage was more affected by the inoculation of the antagonistic bacterium in unrepeated cultivation soils than that in repeated cultivation soils, and bacterization of forage with B. subtilis resulted in an inrreased yield.

  • PDF

Effects of cultivation methods on methane emission in rice paddy

  • Kim, Sukjin;Choi, Jong-Seo;Kang, Shin-gu;Park, Jeong-wha;Yang, Woonho
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.319-319
    • /
    • 2017
  • Methane is the main greenhouse gas released from rice paddy field. Methane from paddy fields accounts for 11 % of the global total methane emission. The global warming potential (GWP) of methane is 25 times more than that of carbon dioxide on a mass basis. It is well known that most effective practice to mitigate methane in paddy is related to the water management during rice growing season and the use of organic matters. This study was conducted to investigate the effects of tillage and cultivation method on methane emission in paddy. Tillage (tillage and no-tillage) and cultivation methods (transplanting and direct seeding) were combined tillage-transplanting (T-T), tillage-wet hill seeding (T-W), tillage-dry seeding (T-D) and no-till dry seeding (NT-D) to evaluate methane mitigation efficiency. Daily methane emission was decreased on seeding treatments (T-W, T-D, NT-D) than transplanting treatment (T-T). Amount of methane emission during rice growing season is highest in T-T ($411.7CH_4\;kg\;ha^{-1}y^{-1}$) and lowest in NT-D treatment (89.7). In T-W and T-D treatments, methane emissions were significantly decreased by 36 and 51 % respectively compared with T-T. Methane emissions were highly correlated with the dry weight of whole rice plant ($R^2=0.62{\sim}0.93$). T-T treatment showed highest $R^2$ (0.93) among the four treatments. Rice grain yields did not significantly differ with the tillage and cultivation methods used. These results suggest that direct seeding practice in rice production could mitigate the methane emissions without loss in grain yield.

  • PDF

Assessment of Nitrogen Impaction on Watershed by Rice Cultivation (벼농사에서 질소유출이 수질에 미치는 영향평가)

  • Roh, Kee-An;Kim, Min-Kyeong;Lee, Byeong-Mo;Lee, Nam-Jong;Seo, Myung-Chul;Koh, Mun-Hwan
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.3
    • /
    • pp.270-279
    • /
    • 2005
  • It is important to understand and evaluate the environmental impacts of rice cultivation for developing environmentally-friendly agriculture because rice is main crop in Korea and rice cultivation have both functions of water pollution and purification with environmental and cultivation conditions. This paper presents the evaluation of nitrogen impact by rice cultivation on water system. A simple protocol was proposed to assess the potential amount of nitrogen outflow from paddy field and most of parameters affect on the nitrogen outflow from paddy field such as the amount of fertilizer application, water balance, the quality and quantity of irrigation water, soil properties, nitrogen turnover in the soil and cultivation method were considered. To develop the protocol, coefficients for parameters affected nitrogen turnover and outflow were gotten and summarized by comparison and analysis of all possible references related, and by additional experiments at field and laboratory. And potential amount of nitrogen input and output by water in paddy field were estimated with the protocol at the conditions of the nitrogen contents of irrigation water, amount of fertilizer application, and irrigation methods. Where irrigation water was clean, below 1.0 mg $L^{-1}$ of nitrogen concentration, rice cultivation polluted nearby watershed. At the conditions of 2.0 mg $L^{-1}$ of nitrogen concentration, 110 kg $ha^{-1}$ of nitrogen fertilizer application and flooding irrigation, rice cultivation had water pollution function, but it had water purification function with intermittent irrigation. At the conditions of 3.0 mg $L^{-1}$ of nitrogen concentration and 110 kg $ha^{-1}$ of nitrogen fertilizer application, rice cultivation had water purification function, but that had water pollution function with 120 kg $ha^{-1}$ of nitrogen application. Where irrigation water was polluted over 6.0 mg $L^{-1}$ of nitrogen, it was evaluated that rice cultivation had water purifying effect, even though the amount of nitrogen application was 120 kg $ha^{-1}$.