• Title/Summary/Keyword: fibroblast cell

Search Result 1,028, Processing Time 0.029 seconds

Sexing and Cell Cycle Induction Hanwoo Fetal Fibroblast Cells (한우 섬유아세포의 성 판별 및 세포주기 유도 분석)

  • 김현주;강회성;최화식;이성호;박창식;진동일
    • Korean Journal of Animal Reproduction
    • /
    • v.27 no.1
    • /
    • pp.53-59
    • /
    • 2003
  • For somatic cell nuclear transfer in Hanwoo, fetal fibroblast cell lines were established from 35, 50, 70 and 90-day fetuses of Korean native cattle. The sex of these fetal fibroblast cells were analyzed by PCR using Y-specific primers and confirmed that two cell lines were female and the other two cell lines were male. Karyotyping of these cell lines indicates that the chromosome numbers of fetal fibroblast cells were not affected by passage number and more than 80% of fetal fibroblast cells have normal chromosome number. To evaluate Go stage in cell cycle of fetal fibroblast cells, Western blotting was performed to detect the expression level of PCNA which is known to be expressed in all cell cycle stages except G$_{0}$ stage. Following serum starvation or confluent culture for 7 days, fetal fibroblast cells were effectively reached to G$_{0}$ stage. The cell cycle was resumed after culture of these Go stage-fetal fibroblast cells with normal medium. These results indicates that fetal fibroblast cells originated from Hanwoo were successfully isolated and culture system and induction of cell cycle of these cells were established for somatic cell nuclear transfer in Hanwoo.woo.

EFFECT OF PDGF AND $TGF-{\beta}1$ ON CELL ACTIVITY OF HUMAN GINGIVAL FIBROBLAST AND PERIODONTAL LIGAM ENT CELL IN VITRO (PDGF와 $TGF-{\beta}1$이 배양 인체 치은 섬유모세포와 치주인대세포의 활성에 미치는 영향)

  • Chung, Soon-Kyu;Nam, Goong-Hyuk;Shin, Hyung-Shik
    • Journal of Periodontal and Implant Science
    • /
    • v.25 no.1
    • /
    • pp.133-145
    • /
    • 1995
  • The migration and proliferation of periodontal ligament cells are desired goal of periodontal regeneration therapy. PDGF and $TGF-{\beta}1$ are well known to regulate the cell activity of mesenchymal origin cell. The purpose of this study was to determine the effects of these growth factors on human gingival fibroblast and periodontal ligament cell actvity, and to identify the regulatory effect of $TGF-{\beta}1$ on the response to PDGF by MIT assay. Human gingival fibroblast and periodontal ligament cells were cultured from extracted teeth for non-periodontal reason. Cultured human gingival fibroblast and periodontal ligament cells in vitro were treated with polyperpetide growth factor PDGF and $TGF-{\beta}1$ in both a dose and time - dependent manner. Cell morphology were determined by inverted microscope and cell acitivity were determined by MIT assay. The result of this study demonstrated that PDGF and $TGF-{\beta}1$ were not changed the morphology of these cell compared with control group. PDGF or $TGF-{\beta}1$ increased cell activity of periodontal ligament cell in dose and time dependent manner but gingival fibroblast were decreased to the level of control group at third day. Additionally, incubation with $TGF-{\beta}1$ addition to PDGF resulted in a enhanced cell activity of PDGF. Therefore, cell acitivty of gingival fibroblast were not changed compared with control group. This stiudy demonstrates that PDGF and $TGF-{\beta}1$ are major mitogens for human periodontal ligament cell in vitro, and $TGF-{\beta}1$ is a regulator of cell activity to PDGF in human gingival fibroblast and periodontal ligament cell.

  • PDF

Effects of Danchisoyo-san on UVB-induced Cell Damage and Gene Expression in Dermal Fibroblast (단치소요산(丹梔逍遙散)이 자외선을 조사한 피부진피세포의 활성 및 유전자발현에 미치는 영향)

  • Lim, Hyun-Jung;Yoo, Dong-Youl
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.24 no.2
    • /
    • pp.13-32
    • /
    • 2011
  • Objectives: This study was performed to elucidate the effects of Danchisoyo-san (DS) on cell damage and gene expression in UVB-exposed dermal fibroblast. Methods: To demonstrate the inhibitory effects of DS on aging of the skin, we used human dermal fibroblast(F6) and UVB light(30 mJ/$cm^2$) was used to damage to dermal fibroblast. We measured the nitrite production, LDH release, and gene expression in UVB-irradiated dermal fibroblast to elucidate the actionmechanism of DS. Also, we evaluated the amount of increased PICP, TIMP-1 in dermal fibroblast. PICP, TIMP-1 concentration was measured using EIA kit, and gene expression (MMP-1, procollagen, c-fos, c-jun, NF-kB, Bcl-2, Bcl-xL, iNOS) were determined using real-time PCR. Results: 1. DS inhibited LDH-release, nitrite production in UVB-irradiated dermal fibroblast. 2. DS suppressed the gene expression of MMP-1 in UVB-irradiated dermal fibroblast. 3. DS increased the gene expression of procollagen in UVB-iradiated dermal fibroblast. 4. DS suppressed the gene expression of c-jun, c-fos, NF-kB, iNOS in UVBirradiated dermal fibroblast. 5. DS increased the gene expression of Bcl-2 in UVB-iradiated dermal fibroblast. 6. DS increased the cell proliferation of dermal fibroblast. Conclusions: From the results, we concluded DS increases the cell proliferation and collagen synthesis in dermal fibroblast. So we suggest that DS has the antiwrinkle effects.

Enhancement of BDNF Production by Co-cultivation of Human Neuroblastoma and Fibroblast Cells

  • Hong, Jong-Soo;Oh, Se-Jong;Kim, Sun-Hee;Park, Kwon-Tae;Cho, Jin-Sang;Park, Kyung-You;Lee, Jin-Ha;Lee, Hyeon-Yong
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.3 no.2
    • /
    • pp.51-54
    • /
    • 1998
  • It has been proved that co-cultivation of human neroblastoma cells and human fibroblast cells can enhance nerve cell growth and the production of BDNF in perfusion cultivation. In batch co-cultivation, maximum cell density was increased up to 1.76${\times}$106 viable cells/mL from 9${\times}$105 viable cells/mL of only neuroblastoma cell culture. The growth of neuroblastoma cells was greatly improved by culturing both nerve and fibroblast cells in a perfusion process, maintaining 1.5${\times}$106 viable cells/mL, which was much higher than that form fed-batch cultivation. The nerve cell growth was greatly enhance in both fed-batch and perfusion cultivations while the growth of fibroblast cells was not. It strongly implies that the factors secreted from human fibrobast cells and/or the environments of co-culture system can enhance both cell growth and BDNF secretion. Specific BDNF production rate was not enhanced in co-cultures; however, the production period was increased as the cell growth was lengthened in the co-culture case. Competitive growth between nerve cells and fibroblast cells was not observed in all cases, showing no changes of fibroblast cell growth and only enhancement of the neuroblastoma cell growth and overall BDNF production. It was also found that the perfusion cultivation was the most appropriate process for cultivating two cell lines simultaneously in a bioreactor.

  • PDF

Effect of Kimchi Ingredients to Reactive Oxygen Species in Skin Cell Cytotoxicity (김치 주.부재료의 활성산소에 대한 피부 세포독성 완화효과)

  • 문갑순;류승희;전영수;문정원;이영순
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.6
    • /
    • pp.998-1005
    • /
    • 1997
  • Kimchi showed protective effect from oxidative damage generated by hydrogen peroxide and paraquat. To investigate the major components of kimchi which reduce the cytotoxicity against reactive oxygen species, keratinocyte(A431, epidermoid carcinoma, human) and fibroblast(CCD-986SK, normal control, human) were cultured under oxidative stress condition provoked by paraquat, a superoxide anion generator, and hydrogen peroxide in the absence or presence of kimchi ingredients. Most keratinocyte and fibroblast cells were killed by hydrogen peroxide and paraquat over 1mM concentration, but kimchi ingredients showed protective effects from oxidative damage generated by hydrogen peroxide and onion, among those, garlic showed the most remarkable preventive effect. Most of kimchi ingredients showed protective effect against paraquat, especially leek notably increased cell survival. For fibroblast cells, ginger had the preventive effect against paraquat, especially leek notably increased cell survival. For fibroblast cells, ginger had the preventive effect from cell killing by high dose of hydrogen peroxide, but most ingredients were not effective against paraquat.

  • PDF

Expression of amino acid transport system L in the differentiation of periodontal ligament fibroblast cells (치주인대섬유모세포의 분화과정에서 아미노산 수송계 L의 발현)

  • Hwang, Kyu-Young;Kim, Do-Kyung;Kim, Chang-Hyun;Jang, Hyun-Seon;Park, Joo-Cheol;Choi, Seong-Mi;Kim, Byung-Ock
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.3
    • /
    • pp.783-796
    • /
    • 2006
  • The periodontium is a topographically complex organ consisting of epithelial tissue, soft and mineralized tissues. Structures comprising the periodontium include the gingiva, periodontal ligament (PDL) , cementum and the alveolar bone. The molecular mechanism of differentiation in PDL fibroblast cells remain unclear. Amino acid transporters play an important role in supplying nutrition to normal and cancer cells and for cell proliferation. Amino acid transport system L is a major nutrient transport system responsible for the Na+-independent transport of neutral amino acids including several essential amino acids. The system L is divided into two major subgroups, the L-type amino acid transporter 1 (LAT1) and the L-type amino acid transporter 2 (LAT2). In this study, the expression pattern of amino acid transport system L was, therefore, investigated in the differentiation of PDL fibroblast cells. To determine the expression level of amino acid transport system L participating in intracellular transport of amino acids in the differentiation of PDL fibroblast cells, it was examined by RT-PCR, observation of cell morphology, Alizaline red-S staining and uptake analysis after inducing experimental differentiation in PDL fibroblast cells isolated from mouse molar teeth. The results are as follows. 1. The LAT1 mRNA was expressed in the early stage of PDL fibroblast cell differentiation. This expression level was gradually reduced by differentiation- inducing time and it was not observed after the late stage. 2. The expression level of LAT2 mRNA was increased in time-dependent manner during differentiation induction of PDL fibroblast cells. 3. There was no changes in. the expression level of 4F2hc mRNA, the cofactor of LAT1 and LAT2, during differentiation of PDL fibroblast cells. 4. The expression level of ALP mRNA was gradually increased and the expression level of Col I mRNA was decreased during differentiation of PDL fibroblast cells. 5. The L-leucine transport was reduced by time from the early stage to the late stage in PDL fibroblast cell differentiation. As the results, it is considered that among neutral ammo acid transport system L in differentiation of PDL fibroblast cells, the LATl has a key role in cell proliferation in the early stage of cell differentiation and the LAT2 has an important role in the late stage of cell differentiation for providing cells with neutral amino acids including several essential amino acids.

Effects of Kwibi-tang on Dermal Fibroblast (귀비탕(歸脾湯)이 인체피부 섬유아세포에 미치는 영향)

  • Je, Yun-Mo;Yoo, Jeong-Eun;Choi, Kyung-Hee;Lim, Hyun-Jung;Yoo, Dong-Youl
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.24 no.4
    • /
    • pp.10-19
    • /
    • 2011
  • Objectives: This study was performed to elucidate the effects of Kwibi-tang extract(KB) on dermal fibroblast. Methods: To demonstrate the effects of KB on dermal fibroblast, we used human dermal fibroblast(F6) and UVB light(30 $mJ/cm^2$) was used to damage to dermal fibroblast. we measured the nitrite production, LDH release in UVB-irradiated dermal fibroblast to elucidate the action-mechanism of KB. Also, we evaluated cell proliferation of dermal fibroblast and the amount of increased PICP, TIMP-1 in dermal fibroblast. Results: 1. KB decreased the cell proliferation of F6 dermal fibroblast in concentration of 50 ${\mu}g/ml$. 2. KB decreased the synthesis of PICP in concentration of 50 ${\mu}g/ml$. 3. KB decreased the synthesis of TIMP-1 in concentration of 50 ${\mu}g/ml$. 4. KB have no effect on the damage in UVB-irradiated F6 dermal fibroblast. Conclusions: From the results, we concluded KB decreases the cell proliferation and collagen synthesis in dermal fibroblast. So we suggest that KB has the anti-hyperplasy of dermal fibroblast.

Ultrastructural Change of the Bile Duct Fibroblast at Infected Rat with Clonorchis sinensis (간흡충에 감염된 실험쥐 담관 섬유모세포의 미세구조적 변화)

  • Kim, Soo-Jin;Min, Byoung-Hoon
    • Applied Microscopy
    • /
    • v.34 no.2
    • /
    • pp.121-130
    • /
    • 2004
  • In this study, ultrastructural change of the bile duct fibroblast at infected rat with Clonorchis sinensis, and the distribution of lectin receptors and actin protein in cultured bile duct infected with Clonorchis sinensis. It explored using colloidal gold label complex with lectin WGA purified from wheat germ (Triticum vulgaris) and anti actin antibody purified actin (43 kDa) isolated from chicken back muscle. The lectin WGA with protein A gold complex labeled sections of the cultured fibroblast revealed gold particles specifically distributed on the multi vesicular form Golgi complex and cell surface of the fibroblast. The actin antibody with protein A gold complex labeled sections of the cultured fibroblast revealed gold particles specifically distributed on the cytoplasm of the fibroblast. Labeling of cultured fibroblast in rat bile duct infected with Clonorchis sinensis was then quantified and compared to that of cultured Fibroblast in Rat Bile duct. These results indicate that lectin WGA receptors are located in the multi vesicular form Golgi complex in the cytoplasm to the cytoplasmic process of the Rat bile duct fibroblast infected with Clonorchis sinensis. Therefore, the GlcNAc and NeuNac regions on the cell surface and cytoplasmic process appear to be functionally associated with cell-recognition and protection from other cell of the tissue, and linked with secretion and exocytosis of the fibroblst cytoplasm. GlcNAc and NeuNAc product in the multi vesicular form Golgi complex then it is transported to cell surface. Actin protein is many appears that infected fibroblast rather than normal fibroblast. The fibroblast of infected with Clonorchis sinensis are against of the physical and chemical stimulation. Then development of cytoplasmic process is relative some stimulation.

Vascular Endothelial Growth Factor Effect on Notch 1 Expression and Proliferation of Fibroblast (혈관내피성장인자의 섬유아세포 증식과 Notch 1 발현에 대한 영향)

  • Koh, Sung-Hoon
    • Archives of Plastic Surgery
    • /
    • v.37 no.1
    • /
    • pp.7-11
    • /
    • 2010
  • Purpose: Vascular endothelial growth factor (VEGF) is known as a growth factor of endothelium and fibroblast. The purpose is to know the VEGF effects on fibroblast proliferation and fibroblast's notch receptor expression. Methods: CCD-986sk fibroblast was purchased from the Korean Cell Bank and was used in XTT assay for proliferation and wound healing assay for migration. Immunofluorescent (IF) staining and western blotting were used in testing notch expression of fibroblast. Semiquantitative RT-PCR was used in checking notch 1 mRNA production by fibroblast. Student-t test was used for analyzing results. Results: Cell proliferation assay using XTT showed significant higher proliferation in VEGF treated fibroblast, $2.324{\pm}0.0026$ vs. $2.463{\pm}0.017$ (p=0.002). Wound healing assay showed longer migration in VEGF treated fibroblast (p=0.062). The fluorescence was brighter in VEGF treated cells of notch 1 IF staining. Notch 1 expressions and mRNA productions increased more in VEGF treated cells. Conclusion: VEGF stimulates fibroblast to proliferate, migrate and to express Notch 1 simultaneously. Notch receptor could be related to VEGF mediated wound healing.

Effects of Kanghwalsokdan-tang on Dermal Fibroblast (강활속단탕(羌活續斷湯)이 인체피부 섬유아세포에 미치는 영향)

  • Yoo, Jeong-Eun;Choi, Kyung-Hee;Lim, Hyun-Jung;Yoo, Dong-Youl
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.25 no.1
    • /
    • pp.20-33
    • /
    • 2012
  • Objectives: This study was performed to elucidate the effects of Kanghwalsokdan-tang extract(KS) on hyper-plasy of collagen and cell damage in UVB-irradiated dermal fibroblast. Methods: To demonstrate the effects of KS on wound healing we used human dermal fibroblast(F6). We evaluated the amount of increased PICP, TIMP-1 in dermal fibroblast. PICP, TIMP-1 concentration was measured using EIA kit. Also, we measured the nitrite production, and LDH release in UVB-irradiated dermal fibroblast to elucidate the action-mechanism of KS. Results: 1. KS decreased the cell proliferation of dermal fibroblast. 2. KS decreased the biosynthesis of collagen in dermal fibroblast. 3. KS decreased the synthesis of TIMP-1 in dermal fibroblast. 4. KS had no effect on the LDH-release of UVB-irradiated dermal fibroblast. 5. KS inhibited nitrite production in UVB-irradiated dermal fibroblast. Conclusions: From the results, we concluded that KS has a protective effect on wound healing and photoaging.