• 제목/요약/키워드: fibrinolytic genes

검색결과 13건 처리시간 0.022초

Improvement of Fibrinolytic Activity of Bacillus subtilis 168 by Integration of a Fibrinolytic Gene into the Chromosome

  • Jeong, Seon-Ju;Park, Ji Yeong;Lee, Jae Yong;Lee, Kang Wook;Cho, Kye Man;Kim, Gyoung Min;Shin, Jung-Hye;Kim, Jong-Sang;Kim, Jeong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권11호
    • /
    • pp.1863-1870
    • /
    • 2015
  • Fibrinolytic enzyme genes (aprE2, aprE176, and aprE179) were introduced into the Bacillus subtilis 168 chromosome without any antibiotic resistance gene. An integration vector, pDG1662, was used to deliver the genes into the amyE site of B. subtilis 168. Integrants, SJ3-5nc, SJ176nc, and SJ179nc, were obtained after two successive homologous recombinations. The integration of each fibrinolytic gene into the middle of the amyE site was confirmed by phenotypes (Amy-, SpecS) and colony PCR results for these strains. The fibrinolytic activities of the integrants were higher than that of B. subtilis 168 by at least 3.2-fold when grown in LB broth. Cheonggukjang was prepared by inoculating each of B. subtilis 168, SJ3-5nc, SJ176nc, and SJ179nc, and the fibrinolytic activity of cheonggukjang was 4.6 ± 0.7, 10.8 ± 0.9, 7.0 ± 0.6, and 8.0 ± 0.2 (U/g of cheonggukjang), respectively at 72 h. These results showed that construction of B. subtilis strains with enhanced fibrinolytic activities is possible by integration of a strong fibrinolytic gene via a marker-free manner.

유전자 cloning에 의한 Bacillus subtilis의 fibrinolytic enzyme 활성 변화 (Variation of fibrinolytic enzyme activity produced Bacillus subtilis by gene cloning)

  • 이홍석;유천권;이철수;강상모
    • 한국미생물·생명공학회지
    • /
    • 제28권1호
    • /
    • pp.14-20
    • /
    • 2000
  • The transformation of Bacillus subtilis K-54 and J-10 was carried out with constructed vectors containing structure and enhancer genes of aprN and prtR, to increase their fibrinolytic enzyme activity. Bands for the aprN and prtR genes were identified from B. subtilis J-10 by PCR that was carried out with the constructed primers for the genes. In addition, the gene fragments contained promoter site based on the results of analysing their nucleotide sequence. The two gene fragments, aprN and prtR, obtained by the PCR, were, then, inserted to vector such as T-vector and E.coli/Bacillus shuttle vector. The constructed vector were designated as pAPR2 (aprN), pENC2 (prtR) and pFLA1 (aprN and prtR), respectively. The constructed vector was used for transformation of the strains of B.subtilis J-10 and B. subtilis K-54 and the fribrinolytic activity of the transformed strains was investigated. The introduction of the vector, pAPR2 and the fibrinolytic activity of the transformed strains was investigated. The introduction of the vector, pAPR2 and pFLA1, resulted in the increase of fibrinolyitic enzyme activity in B. subtilis J-10 by 27.3% and 16%, respectively. However, the introduction of pENC2 to B. subtilis J-10 did not seem to induce increase of the enzyme activity. The strain of B.subtilis K-54 transformed with pENC2 showed an increased fibrinolytic activity by 5 folds compared with that of the original strain of B. subtilis K-54.

  • PDF

DNA Shuffling of aprE Genes to Increase Fibrinolytic Activity and Thermostability

  • Yao, Zhuang;Jeon, Hye Sung;Yoo, Ji Yeon;Kang, Yun Ji;Kim, Min Jae;Kim, Tae Jin;Kim, Jeong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권6호
    • /
    • pp.800-807
    • /
    • 2022
  • Four aprE genes encoding alkaline serine proteases from B. subtilis strains were used as template genes for family gene shuffling. Shuffled genes obtained by DNase I digestion followed by consecutive primerless and regular PCR reactions were ligated with pHY300PLK, an E. coli-Bacillus shuttle vector. The ligation mixture was introduced into B. subtilis WB600 and one transformant (FSM4) showed higher fibrinolytic activity. DNA sequencing confirmed that the shuffled gene (aprEFSM4) consisted of DNA mostly originated from either aprEJS2 or aprE176 in addition to some DNA from either aprE3-5 or aprESJ4. Mature AprEFSM4 (275 amino acids) was different from mature AprEJS2 in 4 amino acids and mature AprE176 in 2 amino acids. aprEFSM4 was overexpressed in E. coli BL21 (DE3) by using pET26b(+) and recombinant AprEFSM4 was purified. The optimal temperature and pH of AprEFSM4 were similar to those of parental enzymes. However, AprEFM4 showed better thermostability and fibrinogen hydrolytic activity than the parental enzymes. The results indicated that DNA shuffling could be used to improve fibrinolytic enzymes from Bacillus sp. for industrial applications.

흑두로 제조한 청국에서 분리된 Bacillus subtillus BB-1으로 부터 혈전용해효소 유전자 크로닝 및 특성규명 (Cloning and Characterization of a Gene for Fibrinolytic Enzyme from Bacillus subtilis BB-1 Isolated from Black Bean Chung-kuk)

  • 이영훈;이성호;전주미;김홍출;조용운;박기훈;최영주;갈상완
    • 생명과학회지
    • /
    • 제15권4호
    • /
    • pp.513-521
    • /
    • 2005
  • 흑두로 제조한 청국으로부터 혈전용해력이 우수한 균을 선발하여 동정하였으며, 그를 Bacillus subtilis BB-1로 명명하였다. 이 균은 혈전용해효소 isozyme을 적어도 5개이상 생성하는 균주로 확인되었다. 이 균으로부터 크로모좀을 분리하여 shot gun법으로 혈전용해효소 유전자를 크로닝하였으며, 이 유전자를 BSF-1이라 명명하였다. 이 유전자는 714개의 아미노산을 암호화하고 있으며 기존에 밝혀진 혈전용해효소 유전자와 상동성은 검출되지 않은 새로운 혈전용해효소 유전자였다. 혈전용해효소활성 최적 pH 및 온도는 5.0과 $35^{\circ}C$였다. 기질특이성은 적혈구 배지 또는 skim milk, gelatin등에 전혀 분해활성이 없었다. 이는 혈전만을 특이적으로 분해하는 기질특이성을 보였으며, 혈전분해효소로서의 이용가능성이 충분한 것으로 판단된다.

Isolation of 2 Bacillus Strains with Strong Fibrinolytic Activities from Kimchi

  • Yao, Zhuang;Meng, Yu;Le, Huong Giang;Lee, Se Jin;Jeon, Hye Sung;Yoo, Ji Yeon;Afifah, Diana Nur;Kim, Jeong Hwan
    • 한국미생물·생명공학회지
    • /
    • 제48권4호
    • /
    • pp.439-446
    • /
    • 2020
  • Two Bacillus strains, K3 and K208, both demonstrating strong fibrinolytic activities were isolated from Kimchi, a traditional Korean preparation of fermented vegetables. Isolates were subjected to various molecular biology based identification methods including RAPD-PCR and identified as B. subtilis and B. velezensis, respectively. Tryptic soy broth (TSB) was found to best maintain both the growth and the fibrinolytic activity of these strains. Culture supernatants were analyzed by SDS-PAGE and fibrin zymography, and the results indicate that a 40 and 27 kDa band seem to be responsible for the fibrinolytic activities of these two isolates and the 27 kDa band was subsequently identified as the mature form of AprE, the major fibrinolytic enzyme. Thus the aprE genes were cloned and the translated amino acid sequences demonstrated 99.3% identity with each other, and 86.5% identity with BsfA, a fibrinolytic enzyme from B. subtilis ZA400 also isolated from Kimchi, and AprE2, a fibrinolytic enzyme from B. subtilis CH3-5 isolated from Cheonggukjang, a traditional Korean fermented soy. Given this B. subtilis K3 and B. velezensis K208 may be promising starter cultures in the production of fermented foods.

Increase of a Fibrinolytic Enzyme Production through Promoter Replacement of aprE3-5 from Bacillus subtilis CH3-5

  • Yao, Zhuang;Meng, Yu;Le, Huong Giang;Lee, Se Jin;Jeon, Hye Sung;Yoo, Ji Yeon;Kim, Jeong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권6호
    • /
    • pp.833-839
    • /
    • 2021
  • Bacillus subtilis CH3-5 isolated from cheonggukjang secretes a 28 kDa protease with a strong fibrinolytic activity. Its gene, aprE3-5, was cloned and expressed in a heterologous host (Jeong et al., 2007). In this study, the promoter of aprE3-5 was replaced with other stronger promoters (Pcry3A, P10, PSG1, PsrfA) of Bacillus spp. using PCR. The constructed chimeric genes were cloned into pHY300PLK vector, and then introduced into B. subtilis WB600. The P10 promoter conferred the highest fibrinolytic activity, i.e., 1.7-fold higher than that conferred by the original promoter. Overproduction of the 28 kDa protease was confirmed using SDS-PAGE and fibrin zymography. RT-qPCR analysis showed that aprE3-5 expression was 2.0-fold higher with the P10 promoter than with the original promoter. Change of the initiation codon from GTG to ATG further increased the fibrinolytic activity. The highest aprE3-5 expression was observed when two copies of the P10 promoter were placed in tandem upstream of the ATG initiation codon. The construct with P10 promoter and ATG and the construct with two copies of P10 promoter in tandem and ATG exhibited 117% and 148% higher fibrinolytic activity, respectively, than that exhibited by the construct containing P10 promoter and GTG. These results confirmed that significant overproduction of a fibrinolytic enzyme can be achieved by suitable promoter modification, and this approach may have applications in the industrial production of AprE3-5 and related fibrinolytic enzymes.

Properties of a Fibrinolytic Enzyme Secreted by Bacillus amyloliquefaciens RSB34, Isolated from Doenjang

  • Yao, Zhuang;Liu, Xiaoming;Shim, Jae Min;Lee, Kang Wook;Kim, Hyun-Jin;Kim, Jeong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권1호
    • /
    • pp.9-18
    • /
    • 2017
  • Nine bacilli with fibrinolytic activities were isolated from doenjang, a traditional Korean fermented soy food. Among them, RSB34 showed the strongest activity and was identified as Bacillus amyloliquefaciens by 16S rRNA and recA gene sequencing. During growth on LB up to 96 h, RSB34 showed the highest fibrinolytic activity ($83.23mU/{\mu}l$) at 48 h. Three bands of 23, 27, and 42 kDa in size were observed when the culture supernatant was analyzed by SDS-PAGE and 27 and 42 kDa bands by fibrin zymography. The gene encoding the 27 kDa fibrinolytic enzyme AprE34 was cloned by PCR. BLAST analyses confirmed that the gene was a homolog to genes encoding AprE-type proteases. aprE34 was overexpressed in Escherichia coli BL21(DE3) using pET26b(+). Recombinant AprE34 was purified and examined for its properties. The $K_m$ and $V_{max}$ values of recombinant AprE34 were $0.131{\pm}0.026mM$ and $16.551{\pm}0.316{\mu}M/l/min$, respectively, when measured using an artificial substrate, N-succinyl-ala-ala-pro-phe-p-nitroanilide. aprE34 was overexpressed in B. subtilis WB600 using pHY300PLK. B. subtilis transformants harboring pHYRSB34 (pHY300PLK with aprE34) showed higher fibrinolytic activity than B. amyloliquefaciens RSB34.

Bacillus subtilis BB-1으로부터 나토키나아제 유전자 크로닝 및 대량발현 (Cloning and High Expression of Nattokinase Gene from Bacillus subtilis BB-1)

  • 이영훈;이성호;박기훈;최영주;정영기;갈상완
    • 생명과학회지
    • /
    • 제16권2호
    • /
    • pp.274-281
    • /
    • 2006
  • 흑두청국으로부터 분리된 혈전용해력이 우수한 Bacillus subtilis BB-1(KFCC 11344P)으로부터 혈전용해효소 유전자를 PCR법에 의해 크로닝하였고 이를 BCF-1으로 명명하였다. BCF-1의 DNA 염기서열결정 결과 1,145 bp 크기의 혈전용해 효소로, 일본의 natto로부터 분리된 nattokinase 유전자와 99%의 상동성을 보임을 확인하였다. 혈전용해효소 유전자의 발현을 위하여 Bacillus 발현계인 Bacillus-E. coli의 shuttle vector인 pEB vector에 크로닝 하고 host로서 B. subtilis 168에 형질전환시켜 대량 발현시켰다. 생산된 혈전용해효소의 최 적활성 pH와 온도는 7.0과 $35^{\circ}C$로 확인되었다, 기질에 대한 분해양상을 조사한 결과 fibrin에서만 특이적으로 강한 분해가 일어났으며, skim milk에서 아주 약한 분해능을 보였으나 blood agar, gelatin, casein에서는 전혀 분해능을 보이지 않았다. 특히 blood agar plate에서 분해능이 없는 것으로 보아 혈액 내에서의 적혈구 파괴현상과 같은 부작용에 대한 위험을 배제할 수 있을 것으로 사료된다. BCF-1에 의해 생산된 혈전용해효소는 fibrin 특이적으로 활성을 나타냄을 확인할 수 있으며, 이는 임상적이나 산업적으로 적용하였을 때 부작용에 대한 위험적인 문제는 배제될 수 있으리라 생각된다.

청국장으로부터 혈전용해 활성이 우수한 균주 분리 및 혈전용해효소정제 (Isolation of Bacteria with Protease Activity from Cheonggukjang and Purification of Fibrinolytic Enzyme)

  • 최연희;이준승;배소영;양근재;염규원;조동혁;강옥화;백형석
    • 생명과학회지
    • /
    • 제23권2호
    • /
    • pp.259-266
    • /
    • 2013
  • 혈전용해효소를 생산하는 균주 분리를 위해서 우선 한국, 일본 등지에서 모은 21개의 청국장 시료를 준비하였고 총 268개의 균주를 분리하였다. 이 중에서 1% skim milk가 포함된 nutrient agar 배지에서 protease를 생산하는 bacteria를 분리하였고, 이 결과로 22개의 균주가 분리되었다. 균주들은 apiweb을 통해 생화학적 특성에 근거하여 동정하였다. 또한 세균동정을 위해 16S rRNA 염기서열 분석을 수행하였다. 분리된 대부분의 균주는 Bacillus subtilis와 Bacillus amyloliquefaciens였다. 혈전용해효소의 활성은 fibrin plate 방법에 의해 측정되었고 A2-14, A2-20, C1-05, C1-09, F2-01로 명명된 다섯 균주가 선택되었다. 이중에서 A2-20 균주는 강한 혈전용해 활성을 보였고 동정결과 Bacillus amyloliquefaciens에 가까웠다. A2-20 균주에 의해 생산되는 혈전용해효소는 균 상등액을 이용한 gel filtration과 ion exchange chromatography를 거쳐 부분정제 되었다. 부분 정제된 효소의 최적 pH는 7.0이었고, 최적 온도는 $35^{\circ}C$였다. 정제된 단백질의 분석은 SDS-PAGE와 zymography로 이루어졌다. 이와 더불어 혈전용해효소의 유전자적 분석도 수행되었으며 A2-20 균주가 생산하는 혈전용해효소의 부분적인 염기서열과 유전적 상동성을 보이는 서열을 규명하였다.

Purification and Characterization of a New Peptidase, Bacillopeptidase DJ-2, Having Fibrinolytic Activity: Produced by Bacillus sp. DJ-2 from Doen-Jang

  • CHOI, NACK-SHICK;YOO, KI-HYUN;HAHM, JEUNG-HO;YOON, KAB-SEOG;CHANG, KYU-TAE;HYUN, BYUNG-HWA;PIL, JAE-MAENG;KIM, SEUNG-HO
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권1호
    • /
    • pp.72-79
    • /
    • 2005
  • A new Bacillus peptidase, bacillopeptidase DJ-2 (bpDJ-2), with molecular mass of 42 kDa and isoelectric point (pI) of 3.5- 3.7, was purified to homogeneity from Bacillus sp. DJ-2 isolated from Doen-Jang, a traditional Korean soybean fermented food. The enzyme was identified as an extracellular serine fibrinolytic protease. The optimal conditions for the reaction were pH 9.0 and $60^{\circ}C$. The first 18 amino acid residues of the N-terminal amino acid sequence of bpDJ-2 were TDGVEWNVDQIDAPKAW, which is identical to that of bacillopeptidase F (bpf). However, based on their Nterminal amino acid sequence, molecular size, and pI, it is different from that of bpf and extracellular 90 kDa. The whole (2,541 bp, full-bpDJ-2) and mature (1,956 bp, mature-bpDJ-2) genes were cloned, and its nucleotide sequence and deduced amino acid sequence were determined. The expressed proteins, full-bpDJ-2 and mature-bpDJ-2, were detected on SDSPAGE at expected sizes of 92 and 68 kDa, respectively.