• Title/Summary/Keyword: fibre grids

Search Result 2, Processing Time 0.026 seconds

Retrofitting of squat masonry walls by FRP grids bonded by cement-based mortar

  • Popa, Viorel;Pascu, Radu;Papurcu, Andrei;Albota, Emil
    • Earthquakes and Structures
    • /
    • v.10 no.1
    • /
    • pp.125-139
    • /
    • 2016
  • For seismic retrofitting of masonry walls, the use of fibre reinforced cement-based mortar for bonding the fibre grids can eliminate some of the shortcomings related to the use of resin as bonding material. The results of an experimental testing program on masonry walls retrofitted with fibre reinforced mortar and fibre grids are presented in this paper. Seven squat masonry walls were tested under unidirectional lateral displacement reversals and constant axial load. Steel anchors were used to increase the effectiveness of the bond between the fibre grids and the masonry walls. Application of fibre grids on both lateral faces of the walls effectively improved the hysteretic behaviour and specimens could be loaded until slip occurred in the horizontal joint between the masonry and the bottom concrete stub. Application of the fibre grids on a single face did not effectively improve the hysteretic behaviour. Retrofitting with fibre reinforced mortar only prevented the early damage but did not effectively increase deformation capacity. When the boundaries of the cross sections were not properly confined, midplane splitting of the masonry walls occurred. Steel anchors embedded in the walls in the corners area effectively prevented this type of failure.

A Freeze-fracture Study on the Odontoblast of Dental Pulp in the Rat Incisor (흰쥐 절치치수의 Odontoblast에 관한 Freeze-Fracture 연구)

  • Kim, Myung-Kook
    • Applied Microscopy
    • /
    • v.16 no.2
    • /
    • pp.1-13
    • /
    • 1986
  • The purpose of this study was to investigate the morphology and intercellular junctions of the odontoblast of dental pulp in the rat incisor by means of the freeze fracture electron microscopy. Twenty male Sprague-Dawley rats weighing $150{\sim}200g$ were used. After being anesthetized by an intraperitoneal injection of 0.5 ml sodium pentobarbital per kg in body weight(60 mg/ml) the animals were perfused with 2.5% glutaraldehyde-2% paraformaldehyde fixative in 0.1 M cacodylate buffer, pH 7.2 through the ascending aorta for one hour. The incisors were carefully extracted from the jaws and demineralized by suspending them in 0.1 M EDTA in 3% glutaraldehyde (pH 7.2) for two weeks. After demineralization, the specimens were obtained from the portion divided into five equal parts. For freeze-fracture replication, demineralized tissues were infiltrated for several hours with 10%, 25% glycerol in 0.1M cacodylate buffer as a cryoprotectant and then frozen in liquid Freon 22 and stored in liquid nitrogen. Fracturing and replication were done in Balzers BAF 400D high-vacuum freeze-fracture apparatus at $-120^{\circ}C$ under routine $5X10^{-7}$ Torr vacuum. The tissue was immediately replicated with platinum unidirectionally at $45^{\circ}$ angle and reinforced with carbon at $90^{\circ}$ angle unidirectionally or by using a rotary stage. The replication process was monitored by a quartz-crystal device. The replicas were immersed in 100% methanol overnight. The tissue was then digested from the replica by clorox (laundry bleach), placed into 5% EDTA, and washed repeatedly with distilled water. The replicas were picked up on 0.3% formvar-coated 75 mesh grids and examined in the JEOL 100B electron microscope. The results were as follows; 1. Both in thin sections and freeze-fracture replicas, three types of intercellular junctions were recognizable in the plasma membrane of odontoblast: gap junction, tight junction and desmosome-like junction. 2. The nuclear pores were evenly distributed over the nuclear envelope. The pore complex formed a ring about 70 nm in diameter. 3. Gap junctions were found between odontoblasts as well as odontoblasts and neighbouring pulp cells (fibroblast, subodontoblastic cell process, nerve-like fibre). Gap junctions, which were round, ellipsoid and pear-shaped and 600 nm in diameter, were observed in the odontoblast. 4. Numerous round and ellipsoid gap junctions could be frequently seen on the plasma membranes in cell body and apical part of the odontoblasts. On the P face, the junctions were recognized as a cluster of closely packed particles, measuring about 9 nm in diameter, and on the E face, the junctions were recognized as a shallow grooves.

  • PDF