• Title/Summary/Keyword: fiber-reinforced self compacting concrete

Search Result 26, Processing Time 0.02 seconds

Studying the effects of CFRP and GFRP sheets on the strengthening of self-compacting RC girders

  • Mazloom, Moosa;Mehrvand, Morteza;Pourhaji, Pardis;Savaripour, Azim
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.1
    • /
    • pp.47-66
    • /
    • 2019
  • One method of retrofitting concrete structures is to use fiber reinforced polymers (FRP). In this research, the shear, torsional and flexural strengthening of self-compacting reinforced concrete (RC) girders are fulfilled with glass fiber reinforced polymer (GFRP) and carbon fiber reinforced polymer (CFRP) materials. At first, for verification, the experimental results were compared with numerical modeling results obtained from ABAQUS software version 6.10. Then the reinforcing sheets were attached to concrete girders in one and two layers. Studying numerical results obtained from ABAQUS software showed that the girders stiffness decreased with the propagations of cracks in them, and then the extra stresses were tolerated by adhesive layers and GFRP and CFRP sheets, which resulted in increasing the bearing capacity of the studied girders. In fact, shear, torsion and bending strengths of the girders increased by reinforcing girders with adding GFRP and CFRP sheets. The samples including two layers of CFRP had the maximum efficiencies that were 90, 76 and 60 percent of improvement in shear, torsion and bending strengths, respectively. It is worth noting that the bearing capacity of concrete girders with adding one layer of CFRP was slightly higher than the ones having two layers of GFRP in all circumstances; therefore, despite the lower initial cost of GFRP, using CFRP can be more economical in some conditions.

Fracture behavior of monotype and hybrid fiber reinforced self-compacting concrete at different temperatures

  • Mazloom, Moosa;Karimpanah, Hemin;Karamloo, Mohammad
    • Advances in concrete construction
    • /
    • v.9 no.4
    • /
    • pp.375-386
    • /
    • 2020
  • In the present study, the effect of basalt, glass, and hybrid glass-basalt fibers on mechanical properties and fracture behavior of self-compacting concrete (SCC) mixes have been assessed at room and elevated temperatures. To do so, twelve mix compositions have been prepared such that the proper workability, flowability, and passing ability have been achieved. Besides, to make comparison possible, water to binder ratio and the amount of solid contents were kept constant. Four fiber dosages of 0.5, 1, 1.5, and 2% (by concrete volume) were considered for monotype fiber reinforced mixes, while the total amount of fiber were kept 1% for hybrid fiber reinforced mixes. Three different portions of glass and basalt fiber were considered for hybridization of fibers to show the best cocktail for hybrid basalt-glass fiber. Test results indicated that the fracture energy of mix is highly dependent on both fiber dosage and temperature. Moreover, the hybrid fiber reinforced mixes showed the highest fracture energies in comparison with monotype fiber reinforced specimens with 1% fiber volume fraction. In general, hybridization has played a leading role in the improvement of mechanical properties and fracture behavior of mixes, while compared to monotype fiber reinforced specimens, hybridization has led to lower amounts of compressive strength.

Study on self-compacting polyester fiber reinforced concrete and strength prediction using ANN

  • Chella Gifta Christopher;Partheeban Pachaivannan;P. Navin Elamparithi
    • Advances in concrete construction
    • /
    • v.15 no.2
    • /
    • pp.85-96
    • /
    • 2023
  • The characteristics of self-compacting concrete (SCC) made with fly ash and reinforced with polyester fibers were investigated in this research. Polyester fibers of 12 mm long and 15 micrometer diameters were utilized in M40 grade SCC mixtures at five different volume fractions 0.025%, 0.05%, 0.075%, 0.1%, 0.3% as a fiber reinforcement. To understand the influence of polyester fibers on passing ability, flowability, segregate resistance the J ring, L box, V funnel, slump flow and U box tests were performed. Polyester fibers have a direct influence, with a maximum of 0.075% polyester fibers producing excellent characteristics. ANN models were constructed using the testing data as inputs to anticipate the fresh and hardened characteristics as targeted outputs. The research revealed that R2 values ranging from 0.900 to 0.997 appears to be a good correlation. The performance of ANN models and regression models for predicting the new characteristics of SCC is also evaluated.

Influence of coarse aggregate properties on specific fracture energy of steel fiber reinforced self compacting concrete

  • Raja Rajeshwari, B.;Sivakumar, M.V.N.
    • Advances in concrete construction
    • /
    • v.9 no.2
    • /
    • pp.173-181
    • /
    • 2020
  • Fracture properties of concrete depend on the mix proportions of the ingredients, specimen shape and size, type of testing method used for the evaluation of fracture properties. Aggregates play a key role for changes in the fracture behaviour of concrete as they constitute about 60-75 % of the total volume of the concrete. The present study deals with the effect of size and quantity of coarse aggregate on the fracture behaviour of steel fibre reinforced self compacting concrete (SFRSCC). Lower coarse aggregate and higher fine aggregate content in SCC results in the stronger interfacial transition zone and a weaker stiffness of concrete compared to vibrated concrete. As the fracture properties depend on the aggregates quantity and size particularly in SCC, three nominal sizes (20 mm, 16 mm and 12.5 mm) and three coarse to fine aggregate proportions (50-50, 45-55, 40-60) were chosen as parameters. Wedge Split Test (WST), a stable test method was adopted to arrive the requisite properties. Specimens without and with guide notch were investigated. The results are indicative of increase in fracture energy with increase in coarse aggregate size and quantity. The splitting force was maximum for specimens with 12.5 mm size which is associated with a brittle failure in the pre-ultimate stage followed by a ductile failure due to the presence of steel fibres in the post-peak stage.

Flowability and Strength Properties of High Flowing Self-Compacting Concrete with Steel Fiber Reinforced (강섬유가 혼입된 고유동 자기충전 콘크리트의 유동 및 강도 특성)

  • Choi, Yun-Wang;Choi, Wook;Jung, Jea-Gwone;An, Tae-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.1 s.53
    • /
    • pp.161-168
    • /
    • 2009
  • In this study, the concrete, in which the steel fiber(SF) with different volume-surface ratios and lengths was intermixed in High flowing Self-Compacting Concrete(HSCC), was produced to compare with steel fiber reinforced concrete as a part of plan to improve the workability and the quality of steel fiber reinforced concrete. As the result of experiment, the flowing and passing characteristics of HSCC intermixed with SF was highly improved as there was no fiber ball phenomenon due to the effect of high flowability and the viscosity, and in the identical range of compressive strength, it showed the tendency that the splitting and flexural strength was increasing as the length was getting longer regardless of volume-surface ratio when compared with HSCC which was intermixed with SF. It is estimated that in case of application of HSCC intermixed with steel fiber to work sites, it would be possible to improve the workability and the quality which would be better than that of steel fiber reinforced concrete which has been used.

Statistical variations in the impact resistance and mechanical properties of polypropylene fiber reinforced self-compacting concrete

  • Mastali, M.;Dalvand, A.;Fakharifar, M.
    • Computers and Concrete
    • /
    • v.18 no.1
    • /
    • pp.113-137
    • /
    • 2016
  • Extensive experimental studies on remarkable mechanical properties Polypropylene Fibre Reinforced Self-compacting Concrete (PFRSCC) have been executed, including different fibre volume fractions of Polypropylene fibers (0.25%, 0.5%, 0.75%, and 1%) and different water to cement ratios (0.21, 0.34, 0.38, and 0.41). The experimental program was carried out by using two hundred and sixteen specimens to obtain the impact resistance and mechanical properties of PFRSCC materials, considering compressive strength, splitting tensile strength, and flexural strength. Statistical and analytical studies have been mainly focused on experimental data to correlate of mechanical properties of PFRSCC materials. Statistical results revealed that compressive, splitting tensile, and flexural strengths as well as impact resistance follow the normal distribution. Moreover, to correlate mechanical properties based on acquired test results, linear and nonlinear equations were developed among mechanical properties and impact resistance of PFRSCC materials.

Numerical Investigation of the Density and Inlet Velocity Effects on Fiber Orientation Inside Fresh SFRSCC (SFRSCC의 섬유 방향성에 미치는 입구 속도와 점성의 영향성에 대한 수치해석)

  • Azad, Ali;Lee, Jong-Jae;Lee, Jong-Han;Lee, Gun-Jun;An, Yun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.3
    • /
    • pp.16-20
    • /
    • 2018
  • Steel Fiber reinforced self-compacting concrete (SFRSCC) has been widely used in a number of structures, such as ordinary civil infrastructures, sky scrapers, nuclear power plants, hospitals, dams, channels and etc. Thanks to its short and discrete reinforcing fibers, its performance, including tensile strength, ductility, toughness and flexural strength gets much better in comparison with ordinary self-compacting concrete (SCC) without any reinforcing fibers. Despite all these aforementioned advantages of SFRSCC, its performance highly depends on fiber's orientation. In case of short discrete fibers, the orientation of fibers is completely random and cannot be controlled during pumping process. If fibers distribution inside hardened state concrete are randomly distributed, it leads to less resistance potential of concrete element, especially in terms of flexural and tensile strength. The maximum expected strength may not be achieved. Therefore, fiber alignment has been considered as one of the important factors in SFRSCC. To address this issue, this study investigates the effects of concrete matrix's density and inlet velocity on fiber alignment during the pumping process using a finite element method.

Experimental investigation on self-compacting concrete reinforced with steel fibers

  • Zarrin, Orod;Khoshnoud, Hamid Reza
    • Structural Engineering and Mechanics
    • /
    • v.59 no.1
    • /
    • pp.133-151
    • /
    • 2016
  • Self-Compacting Concrete (SCC) has been originally developed in Japan to offset a growing shortage of skilled labors, is a highly workable concrete, which is not needed to any vibration or impact during casting. The utilizing of fibers in SCC improves the mechanical properties and durability of hardened concrete such as impact strength, flexural strength, and vulnerability to cracking. The purpose of this investigation is to determine the effect of steel fibers on mechanical performance of traditionally reinforced Self-Competing Concrete beams. In this study, two mixes Mix 1% and Mix 2% containing 1% and 2% volume friction of superplasticizer are considered. For each type of mixture, four different volume percentages of 60/30 (length/diameter) fibers of 0.0%, 1.0%, 1.5% and 2% were used. The mechanical properties were determined through compressive and flexural tests. According to the experimental test results, an increase in the steel fibers volume fraction in Mix 1% and Mix 2% improves compressive strength slightly but decreases the workability and other rheological properties of SCC. On the other hand, results revealed that flexural strength, energy absorption capacity and toughness are increased by increasing the steel fiber volume fraction. The results clearly show that the use of fibers improves the post-cracking behavior. The average spacing of between cracks decrease by increasing the fiber volume fraction. Furthermore, fibers increase the tensile strength by bridging actions through the cracks. Therefore, steel fibers increase the ductility and energy absorption capacity of RC elements subjected to flexure.

Crack constitutive model for the prediction of punching failure modes of fiber reinforced concrete laminar structures

  • Ventura-Gouveia, A.;Barros, Joaquim A.O.;Azevedo, Alvaro F.M.
    • Computers and Concrete
    • /
    • v.8 no.6
    • /
    • pp.735-755
    • /
    • 2011
  • The capability of a multi-directional fixed smeared crack constitutive model to simulate the flexural/punching failure modes of fiber reinforced concrete (FRC) laminar structures is discussed. The constitutive model is implemented in a computer program based on the finite element method, where the FRC laminar structures were simulated according to the Reissner-Mindlin shell theory. The shell is discretized into layers for the simulation of the membrane, bending and out-of-plane shear nonlinear behavior. A stress-strain softening diagram is proposed to reproduce, after crack initiation, the evolution of the normal crack component. The in-plane shear crack component is obtained using the concept of shear retention factor, defined by a crack-strain dependent law. To capture the punching failure mode, a softening diagram is proposed to simulate the decrease of the out-of-plane shear stress components with the increase of the corresponding shear strain components, after crack initiation. With this relatively simple approach, accurate predictions of the behavior of FRC structures failing in bending and in shear can be obtained. To assess the predictive performance of the model, a punching experimental test of a module of a façade panel fabricated with steel fiber reinforced self-compacting concrete is numerically simulated. The influence of some parameters defining the softening diagrams is discussed.

Development of fiber reinforced self-compacting concrete (FRSCC): Towards an efficient utilization of quaternary composite binders and fibers

  • Fediuk, Roman;Mosaberpanah, Mohammad A.;Lesovik, Valery
    • Advances in concrete construction
    • /
    • v.9 no.4
    • /
    • pp.387-395
    • /
    • 2020
  • This study has been carried out in two-phases to develop Fiber Reinforced Self-Compacting Concrete (FRSCC) performance. In the first phase, the composition of the quaternary composite binder compromised CEM I 42.5N (58-70%), Rice Husk Ash (25-37%), quartz sand (2.5-7.5%) and limestone crushing waste (2.5-7.5%) were optimized. And in the second phase, the effect of two fiber types (steel brass-plated and basalt) was investigated on the SCC optimized with the optimum CB as disperse reinforcement at 6 different ratios of 1, 1.2, 1.4, 1.6, 1.8, and 2.0% by weight of mix for each type. In this study, the theoretical principles of the synthesis of self-compacting dispersion-reinforced concrete have been developed which consists of optimizing structure-formation processes through the use of a mineral modifier, together with ground crushed cement in a vario-planetary mill to a specific surface area of 550 m2 / kg. The amorphous silica in the modifier composition intensifies the binding of calcium hydroxide formed during the hydration of C3S, helps reduce the basicity of the cement-composite, while reducing the growth of portlandite crystals. Limestone particles contribute to the formation of calcium hydrocarbonate and, together with fine ground quartz sand; act as microfiller, clogging the pores of the cement. Furthermore, the results revealed that the effect of fiber addition improves the mechanical properties of FRSCC. It was found that the steel fiber performed better than basalt fiber on tensile strength and modulus of elasticity; however, both fibers have the same performance on the first crack strength and sample destruction of FRSCC. It also illustrates that there will be an optimum percentage of fiber addition.