• Title/Summary/Keyword: fiber-reinforced polymer reinforcement

Search Result 203, Processing Time 0.023 seconds

Flexural behavior of sandwich beams with novel triaxially woven fabric composite skins

  • Al-Fasih, M.Y.;Kueh, A.B.H.;Ibrahim, M.H.W.
    • Steel and Composite Structures
    • /
    • v.34 no.2
    • /
    • pp.299-308
    • /
    • 2020
  • This study aims to carry out the experimental and numerical investigation on the flexural behavior of sandwich honeycomb composite (SHC) beams reinforced with novel triaxially woven fabric composite skins. Different stacking sequences of the carbon fiber reinforcement polymer (CFRP) laminate; i.e., 0°-direction of TW (TW0), 0°-direction of UD (UD0), and 90°-direction of UD (UD90) were studied, from which the flexural behavior of SHC beam behaviors reinforced with TW0/UD0 or TW0/UD90 novel laminated skins were compared with those reinforced with UD0/90 conventional laminated skins under four-point loading. Generally, TW0/UD0 SHC beams displayed the same flexural stiffness as UD0/90 SHC beams in terms of load-deflection relationships. In contrast, TW0/UD90 SHC beams showed a 70% lower efficiency than those of UD0/90 SHC. Hence, the TW0/UD0 laminate arrangement is more effective with a mass reduction of 39% compared with UD0/90 for SHC beams, although their stiffness and shear strength are practically identical.

Experimental study on effect of EBRIG shear strengthening method on the behavior of RC beams

  • Shomali, Amir;Mostofinejad, Davood;Esfahani, Mohammad Reza
    • Advances in concrete construction
    • /
    • v.8 no.2
    • /
    • pp.145-154
    • /
    • 2019
  • The present experimental study addresses the structural response of reinforced concrete (RC) beams strengthened in shear. Thirteen RC beams were divided into four different sets to investigate the effect of transverse and longitudinal steel reinforcement ratios, concrete compressive strength change and orientation for installing carbon fiber-reinforced polymer (CFRP) laminates. Then, we employed a shear strengthening solution through externally bonded reinforcement in grooves (EBRIG) and externally bonded reinforcement (EBR) techniques. In this regard, rectangular beams of $200{\times}300{\times}2000mm$ dimensions were subjected to the 4-point static loading condition and their load-displacement curves, load-carrying capacity and ductility changes were compared. The results revealed that using EBRIG method, the gain percentage augmented with the increase in the longitudinal reinforcement ratio. Also, in the RC beams with stirrups, the gain in shear strength decreased as transverse reinforcement ratio increased. The results also revealed that the shear resistance obtained by the experimental tests were in acceptable agreement with the design equations. Besides, the results of this research indicated that using the EBRIG system through vertical grooves in RC beams with and without stirrups caused the energy absorption to increase about 85% and 97%, respectively, relative to the control.

Behavior of Fiber-Reinforced Smart Soft Composite Actuators According to Material Composition (섬유 강화 지능형 연성 복합재 구동기의 재료구성에 따른 거동특성 평가)

  • Han, Min-Woo;Kim, Hyung-Il;Song, Sung-Hyuk;Ahn, Sung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.2
    • /
    • pp.81-85
    • /
    • 2017
  • Fiber-reinforced polymer composites, which are made by combining a continuous fiber that acts as reinforcement and a homogeneous polymeric material that acts as a host, are engineering materials with high strength and stiffness and a lightweight structure. In this study, a shape memory alloy(SMA) reinforced composite actuator is presented. This actuator is used to generate large deformations in single lightweight structures and can be used in applications requiring a high degree of adaptability to various external conditions. The proposed actuator consists of numerous individual laminas of the glass-fiber fabric that are embedded in a polymeric matrix. To characterize its deformation behavior, the composition of the actuator was changed by changing the matrix material and the number of the glass-fiber fabric layers. In addition, current of various magnitudes were applied to each actuator to study the effect of the heating of SMA wires on applying current.

Modelling the reinforced concrete beams strengthened with GFRP against shear crack

  • Kaya, Mustafa;Yaman, Canberk
    • Computers and Concrete
    • /
    • v.21 no.2
    • /
    • pp.127-137
    • /
    • 2018
  • In this study, the behavior of the number of anchorage bolts on the glass-fiber reinforced polymer (GFRP) plates adhered to the surfaces of reinforcing concrete (RC) T-beams was investigated analytically. The analytical results were compared to the test results in term of shear strength, and midpoint displacement of the beam. The modelling of the beams was conducted in ABAQUS/CAE finite element software. The Concrete Damaged Plasticity (CDP) model was used for concrete material modeling, and Classical Metal Plasticity (CMP) model was used for reinforcement material modelling. Model-1 was the reference specimen with enough sufficient shear reinforcement, and Model-2 was the reference specimen having low shear reinforcement. Model-3, Model-4 and Model-5 were the specimens with lower shear reinforcement. These models consist of a single variable which was the number of anchorage bolts implemented to the GFRP plates. The anchorage bolts of 2, 3, and 4 were mutually mounted on each GFRP plates through the beam surfaces for Model-3, Model-4, and Model-5, respectively. It was found that Model-1, Model-3, Model-4 and Model-5 provided results approximately equal to the test results. The results show that the shear strength of the beams increased with increasing of anchorage numbers. While close results were obtained for Model-1, Model-3, Model-4 and Model-5, in Model-2, the rate of increase of displacement was higher than the increase of load rate. It was seen, finite element based ABAQUS program is inadequate in the modeling of the reinforced concrete specimens under shear force.

Evaluation of Reflection Cracking Resistance of Grid-Reinforced Asphalt Pavement Using Overlay Tester (Overlay Tester를 이용한 그리드 보강 아스팔트 포장의 반사균열 저항성 평가)

  • Yoo, Byung Soo;Seo, Woo Jin;Kim, Jo Soon;Park, Dae Wook
    • International Journal of Highway Engineering
    • /
    • v.18 no.1
    • /
    • pp.57-62
    • /
    • 2016
  • PURPOSES : Reflection cracking has been one of the major causes of distress when asphalt pavement is laid on top of concrete pavement. This study evaluated the reflection cracking resistance of asphalt mixtures reinforced with asphalt embedded glass fiber and carbon fiber using a Texas Transportation Institute (TTI) overlay tester. METHODS : Different asphalt mixtures such as polymer-modified mastic asphalt (PSMA) and a dense graded asphalt mixture were reinforced with asphalt-embedded carbon fiber and glass fiber. For comparison purposes, two PSMA asphalt mixtures and one dense graded asphalt mixture were evaluated without fiber reinforcement. Two different overlay test modes, the repeated overlay test (R-OT) and monotonic overlay test (M-OT), were used to evaluate the reflection cracking resistance of asphalt mixtures at $0^{\circ}C$. In the R-OT test, the number of repeated load when the specimen failed was obtained. In the M-OT test, the tensile strength at the peak load and tensile strain were obtained. RESULTS : As expected, the fiber-reinforced asphalt mixture showed a higher reflection cracking resistance than the conventional nonreinforced asphalt mixtures based on the R-OT test and M-OT test. The dense graded asphalt mixture showed the least reflection cracking resistance and less resistance than the PSMA. CONCLUSIONS : The TTI overlay tester could be used to differentiate the reflection cracking resistance values of asphalt mixtures. Based on the R-OT and M-OT results, the carbon-fiber-reinforced asphalt mixture showed the highest reflection cracking resistance among the nonreinforced asphalt mixtures and glass-fiber-reinforced asphalt mixture.

Flexural Strength Capacity of RC Beams Strengthened with Pultruded T-Shape Carbon Fiber Reinforced Polymers (인발성형된 T형 탄소섬유복합재료를 이용한 철근콘크리트보의 휨보강 성능)

  • Park, Jong-Sup;Park, Young-Hwan;You, Young-Jun;Jung, Woo-Tai;Kang, Jae-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.473-476
    • /
    • 2004
  • Carbon Fiber Reinforced Polymer(CFRP) composites are widely applied to strengthen deteriorated concrete structures. This paper presents the experimental results of the performance of reinforced concrete(RC) beams strengthened with Near Surface Mounted T-shape CFRP. Simple beams with 3m span length were tested to investigate the effect of CFRP reinforcement shapes on the flexural behavior of strengthened RC beams. The test results were analyzed with the special emphasis on the failure mode and the maximum load.

  • PDF

Experimental Verification of Reinforced Concrete Beam with FRP Rebar (FRP 보강콘크리트 보의 휨거동에 관한 실험적 연구)

  • Oh, Hong Seob;Ahn, Kwan-Yeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.3
    • /
    • pp.93-100
    • /
    • 2008
  • The use of fiber reinforced polymer (FRP) composites is significantly growing in construction and infrastructure applications where durability under harsh environmental conditions is of great concern. In order to examine the applicability of FRP rebar as a reinforcement in flexural member, flexural tests were conducted. 12 beams with different FRP materials such as CFRP, GFRP and Hybrid FRP and reinforcement ratio were tested and analyzed in terms of failure mode, moment-deflection, flexural capacity, ductility index and sectional strain distribution. The test results were also compared with the theoretical model represented in ACI 440.1R06. Test results indicate that the flexural capacity of the beams reinforced by FRP bars can be accurately predicted using the ultimate design theory. They also show that the current ACI model for computing the deflection overestimates the actual deflection of GFRP series and underestimates the deflection of CFRP series.

Behavior of Concrete Bridge Deck Using Hybrid Reinforcement System (Hybrid Reinforcement System을 이용한 콘크리트 교량상판 슬래브의 거동)

  • Park Sang-Yeol;Cho Keun-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.4 s.82
    • /
    • pp.451-458
    • /
    • 2004
  • This study describes the basic concept and the applicability of Hybrid Reinforcement System using conventional steel reinforcing bars and Fiber Reinforced Polymer bars. The concrete bridge decks are assumed to be supported by beams and reinforced with two layers of reinforcing bars. In concrete bridge deck using HRS, the top tensile force for negative moment zone on beam supports is assumed to be resisted by FRP reinforcing bars, and the bottom tensile force for positive moment zone in the middle of hem supports is assumed to be resisted by conventional steel reinforcing bars, respectively. The FRP reinforcing bars are non-corrosive. Thus, the steel reinforcement is as far away as possible from the top surface of the deck and protected from intrusion of corrosive agent. HRS concrete bridge deck has sufficient ductility at ultimate state as the following reasons; 1) FRP bars have lower elastic modulus and higher ultimate strain than steel re-bars have, 2) FRP bars have lower ultimate strain if provided higher reinforcement ratio, 3) ultimate strain of FRP bars can be reduced if FRP bars are unbonded. Test results showed that FRP and HRS concrete slabs are not failed by FRP bar rupture, but failed by concrete compression in the range of ordinary reinforcement ratio. Therefore, in continuous concrete bridge deck using HRS, steel reinforcing bars for positive moment yield and form plastic hinge first and compressive concrete fail in the bottom of supports or in the top of the middle of supports last. Thus, bridge deck consumes significant inelastic strain energy before its failure.

Evaluation of Punching Shear for Flat Plates Using GFRP Plate Shear Reinforcement (GFRP 판을 전단보강재로 사용한 플랫 플레이트의 뚫림전단 성능 평가)

  • Lee, Young Hak;Kim, Min Sook;Hwang, Seung Yeon;Choi, Jinwoong;Kim, Heecheul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.5
    • /
    • pp.413-420
    • /
    • 2014
  • The purpose of this study is to experimentally investigate the shear behavior of flat plate that reinforced by embedded GFRP(glass fiber reinforced polymer) plate with openings. Shape of the GFRP shear reinforcement is a plate with several openings to ensure perfect integration with concrete. The test was performed on 7 specimens to check shear strength of flat plate that reinforced by GFRP plate. The parameters include the spacing of the shear reinforcement and amount of the shear reinforcement. The result of test showed that when amount of shear reinforcement was increased, shear strength improved. The result of test showed that maximum shear strength was confirmed when spacing of shear reinforcement was 0.3d. The calculation of the shear strength of reinforced flat plate with GFRP plate based on the KCI was compared with the test results.

Prediction of Failure Modes for Reinforced Concrete Beams Strengthened with NSM CFRP Reinforcement (탄소섬유보강재로 표면매립 보강된 철근콘크리트보의 파괴모드 예측)

  • Jung, Woo Tai;Park, Jong Sup;Park, Young Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3A
    • /
    • pp.349-356
    • /
    • 2008
  • Recently FRP (Fiber Reinforcement Polymer) is widely used for the strengthening of damaged RC beams. Although many tests were carried out to verify flexural capacity of RC beams strengthened with FRP sheet or plate, the behavior of strengthened RC beams has not yet clearly verified. To investigate the strengthening efficiency of the Near Surface Mounted Reinforcement (NSMR) technique experimentally and analytically, a total of 7 specimens have been tested. The experimental results revealed that specimens strengthened with NSMR improved the flexural capacity of RC beams. Also, while the NSMR specimens utilized CFRP reinforcement efficiently compared to the EBR (Externally Bonded Reinforcement) specimen, the NSMR specimens still have debonding failure between epoxy and concrete interface. This study has proposed the model to predict failure modes and failure loads. Good agreement was obtained between the predicted and the experimental results.