• Title/Summary/Keyword: fiber-reinforced polymer

Search Result 935, Processing Time 0.03 seconds

Fracture Analysis of Concrete Cylinder by Boundary Element Method (경계요소법에 의한 콘크리트 원통형관의 파괴해석)

  • 송하원;전재홍;변근주
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.10a
    • /
    • pp.171-177
    • /
    • 1995
  • Fracture mechanics does work for concrete, provided that one uses a proper, nonlinear form of fracture mechanics in which a finite nonlinear zone at fracture front is being considered. The fracture process zone is a region ahead of a traction-free crack, and the development of model of fracture process zone is most important to describe fracture phenomena in concrete. This paper is about fracture behavior of concrete cylinder under lateral pressure. Concrete cylinders were made of high strength normal connote, steel fiber reinforced concrete and steel fiber reinforced polymer-impregnated concrete and concrete and the fracture behavior such as cracking propagation and ultimate load are observed. The fracture process zone is modelled by a Dugdale-Barenblatt type model with linear tension-softening curve and are implemented to the boundary element technique for the fracture analyses of the cylinders. The experimental results are compared with analysis results and tension-softening curves for the steel fiber reinforced concrete and steel fiber reinforced polymer-impregnated concrete are obtained by back analyses.

  • PDF

Use and advantage of Red algae fiber as reinforcement of Biocomposite (홍조류 섬유를 보강재로 사용한 바이오복합재료의 특성)

  • Lee, Min-Woo;Seo, Yung-Bum;Han, Seong-Ok
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2007.11a
    • /
    • pp.93-102
    • /
    • 2007
  • Biocomposite was organized with biodegradable polymer and natural fiber that has potential to be used as replacement for glass fiber reinforced polymer composite with the benefits of low cost, low density, acceptable specific strength, biodegradability, etc. Until now, non-wood fibers have been used as reinforcements of biocomposite which are all plant-based fibers. The present study focused on investigating the fabrication and characterization of biocomposite reinforced with red algae fiber. The bleached red algae fiber(BRAF) showed very similar crystallinity to the cellulose. It has high stability against thermal degradation (maximum thermal decomposition temperature of 359.3$^{\circ}C$) and thermal expansion. Biocomposites reinforced with BRAF have been fabricated by a compression molding method and their mechanical and thermal properties have been studied. The storage modulus and the thermomechanical stability of PBS matrix are markedly improved with reinforcing the BRAF. These results support that the red algae fiber can be used as an excellent reinforcement of biocomposites as "green-composite" or "eco-composite".

  • PDF

Ablative Properties of 4D Carbon/Carbon Composites by Combustion Test

  • Park, Jong-Min;Ahn, Chong-Jin;Joo, Hyeok-Jong
    • Carbon letters
    • /
    • v.9 no.4
    • /
    • pp.316-323
    • /
    • 2008
  • The factors that influence ablation resistance in fiber composites are properties of the reinforced fiber and matrix, plugging quantity of fiber, geometrical arrangement, crack, pore size, and their distributions. To examine ablation resistance according to distribution of crack and pore size that exist in carbon/carbon composites, this study produced various sizes of unit cells of preforms. They were densified using high pressure impregnation and carbonization process. Reinforced fiber is PAN based carbon fiber and composites were heat-treated up to $2800^{\circ}C$. The finally acquired density of carbon/carbon composites reached more than $1.932\;g/cm^3$. The ablation test was performed by a solid propellant rocket engine. The erosion rate of samples is below 0.0286 mm/s. In conclusion, in terms of ablation properties, the higher degree of graphitization is, the more fibers that are arranged vertically to the direction of combustion flame are, and the less interface between reinforced fiber bundle and matrix is, the better ablation resistance is shown.

An Experimental Study on the Behavior of Carbon Fiber Grid Reinforced Flexural Members (탄소섬유그리드 보강 휨부재의 거동에 대한 실험적 연구)

  • 박제용;안동준;정상균;윤순종
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.154-159
    • /
    • 1999
  • In this paper we present tile results of an experimental investigation on the physical and mechanical properties of carbon fiber grid, polymer mortar, and carbon fiber grid reinforced plain concrete flexural members. In order to repairing and reinforcing damaged and/or deteriorated existing concrete structural members, new materials have been developed and utilized in the construction industries. But the physical and mechanical behaviors of the material are not well understood. To use the material effectively various aspects of the material must be throughly investigated analytically as well as experimentally. In this investigation we found the physical and mechanical properties of carbon fiber grid and polymer mortar which are directly utilized in the repair and reinforcement design of damaged or deteriorated concrete structures. In addition, we also investigate the strengthening effect of carbon fiber grid on the plain concrete flexural test specimens. It was found that the material can be used to repair and strengthen the concrete structures effectively.

  • PDF

Numerical Column Model for Damaged Non-ductile Reinforced Concrete Frame Repaired Using FRP Jacketing System (초기 손상을 입은 비연성 철근콘크리트 골조의 FRP재킷으로 보수된 기둥의 수치해석모델)

  • Shin, Jiuk;Jeon, Jong-Su;Kim, JunHee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.5
    • /
    • pp.291-298
    • /
    • 2018
  • Existing reinforced concrete building structures have seismic vulnerabilities under successive earthquakes (or mainshock-aftershock sequences) due to their inadequate column detailing, which leads to shear failure in the columns. To improve the shear capacity and ductility of the shear-critical columns, a fiber-reinforced polymer jacketing system has been widely used for seismic retrofit and repair. This study proposed a numerical modeling technique for damaged reinforced concrete columns repaired using the fiber-reinforced polymer jacketing system and validated the numerical responses with past experimental results. The column model well captured the experimental results in terms of lateral forces, stiffness, energy dissipation and failure modes. The proposed column modeling method enables to predict post-repair effects on structures initially damaged by mainshock.

Flexural Behavior of Laminated Wood Beams Strengthened with Novel Hybrid Composite Systems: An Experimental Study

  • Mehmet Faruk OZDEMIR;Muslum Murat MARAS;Hasan Basri YURTSEVEN
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.6
    • /
    • pp.526-541
    • /
    • 2023
  • Wooden structures are widely used, particularly in earthquake zones, owing to their light weight, ease of application, and resistance to the external environment. In this study, we aimed to improve the mechanical properties of laminated timber beams using novel hybrid systems [carbon-fiber-reinforced polymer (CFRP) and wire rope]. Within the scope of this study, it is expected that using wood, which is an environmentally friendly and sustainable building element, will be more economical and safe than the reinforced concrete and steel elements currently used to pass through wide openings. The structural behavior of the hybrid-reinforced laminated timber beams was determined under the loading system. The experimental findings showed that the highest increase in the values of laminated beams reinforced with steel ropes was obtained with the 2N reinforcement, with a maximum load of 38 kN and a displacement of 137 mm. Thus, a load increase of 168% and displacement increase of 275% compared with the reference sample were obtained. Compared with the reference sample, a load increase of 92% and a displacement increase of 14% were obtained. Carbon fabrics placed between the layers with fiber-reinforced polymer (FRP) prevented crack development and provided significant interlayer connections. Consequently, the fabrics placed between the laminated wooden beams with the innovative reinforcement system will not disrupt the aesthetics or reduce the effect of earthquake forces, and significant reductions can be achieved in these sections.

Iterative neural network strategy for static model identification of an FRP deck

  • Kim, Dookie;Kim, Dong Hyawn;Cui, Jintao;Seo, Hyeong Yeol;Lee, Young Ho
    • Steel and Composite Structures
    • /
    • v.9 no.5
    • /
    • pp.445-455
    • /
    • 2009
  • This study proposes a system identification technique for a fiber-reinforced polymer deck with neural networks. Neural networks are trained for system identification and the identified structure gives training data in return. This process is repeated until the identified parameters converge. Hence, the proposed algorithm is called an iterative neural network scheme. The proposed algorithm also relies on recent developments in the experimental design of the response surface method. The proposed strategy is verified with known systems and applied to a fiber-reinforced polymer bridge deck with experimental data.

Melt Rheology and Property of Short Aramid Fiber Reinforced Polyethylene Composites (아라미드단섬유강화 폴리에틸렌복합재료의 용융특성 및 물성)

  • Choi, Chi Hoon;Ok, Young Sook;Kim, Byung Kyu;Ha, Chang Sik;Cho, Wong Jei;Shin, Young Jo
    • Applied Chemistry for Engineering
    • /
    • v.3 no.1
    • /
    • pp.81-87
    • /
    • 1992
  • Polyethylenes were reinforced with short aramid fibers on an open roll. Fiber orientation and the anisotropy of physical property were studied using scanning electron microscopy and tensile tester, together with the melt properties from an RDS rheometer. It was found that fiber orientation was obtained in roll operation, and the anisotropy of property became greater with the increase of fiber loading. Melt viscosity measurements indicated that the viscosity increases with fiber loading, with the effect much more pronounced at low loading and low frequency.

  • PDF

Flexural Behavior of R.C Beams Retrofitted with Hybrid FRP(Fiber Reinforced Polymer) (Hybrid FRP(Fiber Reinforced Polymer)로 보강된 철근 콘크리트 보의 휨거동에 관한 연구)

  • 박은정;신영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.515-520
    • /
    • 2001
  • This study discusses the flexural performance of rehabilitated composite sections, consisting originally of R/C beams and subsequently strengthened by, Hybrid Fiber Reinforced Polymers(FRPs) and adhesives. Experimentations were peformed with 8 specimens to compare the rehabilitated effect of the length of FRPs, 2plies of FRPs, and 3plies of FRPs. The results show that the increase of the FRP strengthening length is effective on the flexural capacity and strength. Also, R.C beams retrofitted with hybrid FRPs are more effective on the increase of flexural capacity, strength, stiffness, and ductility than with a single kind of FRPs.

  • PDF

The Flexural Strengthening Effect of I-Shape PFRP Member Using Carbon Fiber Sheet (탄소섬유시트를 이용한 I형 PFRP 부재의 휨보강 효과)

  • Lee, Young-Geun;Kim, Sun-Hee;Lee, Kang-Yeon;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.4 no.2
    • /
    • pp.1-7
    • /
    • 2013
  • In recent years, fiber reinforced polymer plastic composites are readily available in the construction industry. Fiber reinforced polymer composite has many advantages such as high specific strength and high specific stiffness, high corrosion resistance, light-weight, magnetic transparency, etc. In this paper, we present the result of investigation pertaining to the flexural behavior of flange strengthened I-shape pultruded fiber reinforced polymer plastic (PFRP) member using carbon fiber sheet (CFRP sheet). Test variable is consisted of the number of layers of strengthening CFRP sheet from 0 to 3. From the experimental results, flexural strengthening effect of flange strengthened I-shape PFRP member using CFRP sheet is evaluated and it was found that 2 layers of strengthening CFRP sheet are appropriate considering efficiency and workability.