• Title/Summary/Keyword: fiber technique

Search Result 1,113, Processing Time 0.028 seconds

Fracture Analysis of Concrete Cylinder by Boundary Element Method (경계요소법에 의한 콘크리트 원통형관의 파괴해석)

  • 송하원;전재홍;변근주
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.10a
    • /
    • pp.171-177
    • /
    • 1995
  • Fracture mechanics does work for concrete, provided that one uses a proper, nonlinear form of fracture mechanics in which a finite nonlinear zone at fracture front is being considered. The fracture process zone is a region ahead of a traction-free crack, and the development of model of fracture process zone is most important to describe fracture phenomena in concrete. This paper is about fracture behavior of concrete cylinder under lateral pressure. Concrete cylinders were made of high strength normal connote, steel fiber reinforced concrete and steel fiber reinforced polymer-impregnated concrete and concrete and the fracture behavior such as cracking propagation and ultimate load are observed. The fracture process zone is modelled by a Dugdale-Barenblatt type model with linear tension-softening curve and are implemented to the boundary element technique for the fracture analyses of the cylinders. The experimental results are compared with analysis results and tension-softening curves for the steel fiber reinforced concrete and steel fiber reinforced polymer-impregnated concrete are obtained by back analyses.

  • PDF

Wavelength Readout of A Fiber Laser Using Time Delayed Quadrature Sampling (시간지연샘플링을 이용한 광섬유레이저의 파장변화검출)

  • 김종섭;송민호
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.3
    • /
    • pp.31-38
    • /
    • 2004
  • The wavelength variation of a scanned fiber laser is analyzed using quadrature sampling technique. By time delayed sampling of a phase modulated Mach-Zender interferometer, the wavelength information can be precisely determined regardless of the nonlinearity in the Fabry-Perot wavelength filter which scanned the fiber laser. A wavelength readout resolution of ~20 pm was obtained at 2 KHz M-Z modulation frequency, and it was shown that the resolution could be improved in case of using an electro-optic phase modulator.

Acoustic Emission and Fracture Process of Hybrid HPFRCCs with Polyethylene Fiber and Steel Cord (PE 섬유와 강섬유를 사용한 하이브리드 HPFRCCs의 파괴특성 및 음향방출특성)

  • Kim, Sun-Woo;Jeon, Su-Man;Kim, Yong-Cheol;Yun, Hyun-Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.253-256
    • /
    • 2006
  • The HPFRCCs show the multiple crack and damage tolerance capacity due to the interfacial bonding of the fibers to the cement matrix. For practical application, it is needed to investigate the fractural behavior and of HPFRCCs and understand the micro-mechanism of cement matrix with reinforcing fiber. The objectives of this paper are to examine the compressive behavior, fracture and damage process of HPFRCC by acoustic emission technique. Total four series were tested, and the main variables were the hybrid type, polyethylene (PE) and steel cord (SC), and fiber volume fraction. The damage progress by compressive behavior of the HPFRCCs is characteristic for the hybrid fiber type and volume fraction. And from acoustic emission (AE) parameter value, it is found that the second and third compressive load cycles resulted in successive decrease of the ring-down count rate as compared with the first compressive load cycle.

  • PDF

Decaying/Expanding Distribution of RDPS in the Half Section of a Dispersion-Managed Optical Link Combined with Mid-Span Spectral Inversion

  • Lee, Seong-Real
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.4
    • /
    • pp.227-233
    • /
    • 2019
  • In long-haul optical communication system consisting of standard single-mode fiber spans and fiber amplifiers, such as the erbium-doped fiber amplifier, performance is deteriorated by signal distortion due to chromatic dispersion and nonlinearity of the fiber. A combination of dispersion management and optical phase conjugation is an effective technique to compensate for the distortion. In an optical link configured by this combination, a dispersion map mainly affects the compensation of the distorted optical signals. This paper proposes new dispersion maps configured by the decaying or expanding distribution of residual dispersion per span (RDPS) in a dispersion-managed link combined with a midway optical phase conjugator. The effect of the proposed dispersion maps on the compensation for distorted 24 channel × 40 Gbps wavelength-division multiplexed signals was assessed through numerical simulation. It was confirmed that all the proposed dispersion maps are most appropriate for the compensation and, furthermore, for the flexibility of link configuration than conventional links.

Temperature Compensation of a Fiber Optic Strain Sensor Based on Brillouin Scattering

  • Cho, Seok-Beom;Lee, Jung-Ju;Kwon, Il-Bum
    • Journal of the Optical Society of Korea
    • /
    • v.8 no.4
    • /
    • pp.168-173
    • /
    • 2004
  • Brillouin scattering-based fiber optic sensors are useful to measure strain or temperature in a distributed manner. Since the Brillouin frequency of an optical fiber depends on both the strain and temperature, it is very important to know whether the Brillouin frequency shift is caused by the strain change or temperature change. This article presents a temperature compensation technique of a Brillouin scattering-based fiber optic strain sensor. Both the changes of the Brillouin frequency and the Brillouin gain power is observed for the temperature compensation using a BOTDA sensor system. Experimental results showed that the temperature compensated strain values were highly consistent with actual strain values.

Research on Damage Identification of Buried Pipeline Based on Fiber Optic Vibration Signal

  • Weihong Lin;Wei Peng;Yong Kong;Zimin Shen;Yuzhou Du;Leihong Zhang;Dawei Zhang
    • Current Optics and Photonics
    • /
    • v.7 no.5
    • /
    • pp.511-517
    • /
    • 2023
  • Pipelines play an important role in urban water supply and drainage, oil and gas transmission, etc. This paper presents a technique for pattern recognition of fiber optic vibration signals collected by a distributed vibration sensing (DVS) system using a deep learning residual network (ResNet). The optical fiber is laid on the pipeline, and the signal is collected by the DVS system and converted into a 64 × 64 single-channel grayscale image. The grayscale image is input into the ResNet to extract features, and finally the K-nearest-neighbors (KNN) algorithm is used to achieve the classification and recognition of pipeline damage.

Inelastic analysis of concrete beams strengthened with various fiber reinforced polymer (FRP) systems

  • Terro, M.J.;El-Hawary, M.M.;Hamoush, S.A.
    • Computers and Concrete
    • /
    • v.2 no.3
    • /
    • pp.177-188
    • /
    • 2005
  • This paper presents a numerical model developed to evaluate the load-deflection and moment-curvature relationship for concrete beams strengthened externally with four different Fiber Reinforced Polymer (FRP) composite systems. The developed model considers the inelastic behavior of concrete section subjected to a combined axial force and bending moment. The model accounts for tensile strength of concrete as defined by the modulus of rupture of concrete. Based on the adopted material constitutive relations, the model evaluates the sectional curvature as a function of the applied axial load and bending moment. Deflections along the beam are evaluated using a finite difference technique taking into account support conditions. The developed numerical technique has been tested on a cantilever beam with a transverse load applied at its end. A study of the behavior of the beam with tension reinforcement compared to that with FRP areas giving an equivalent ultimate moment has been carried out. Moreover, cracking of the section in the tensile region at ultimate load has also been considered. The results indicated that beams reinforced with FRP systems possess more ductility than those reinforced with steel. This ductility, however, can be tuned by increasing the area of FRP or by combining different FRP layers.

A Study on Microscopic Damage Behavior of Carbon Fiber Sheet Reinforced Concrete using Acoustic Emission Technique (음향방출 기법을 이용한 탄소섬유시트강화 콘크리트의 미시적 손상 거동에 관한 연구)

  • 이진경;이준현;정성륜
    • Composites Research
    • /
    • v.12 no.4
    • /
    • pp.62-70
    • /
    • 1999
  • It was well recognized that damages associated mainly with the aging of civil infrastructrues were one of very serious problems for assurance of safety and reliability. In recent, carbon fiber sheet(CFS) has been widely used for reinforcement and rehabitation of damaged concrete beam. However, the fundamental mechanism of load transfer and its load-resistant for carbon fiber sheet reinforced concrete are not fully understood. In this study, three point bend test has been carried out to understand the damage progress and micro-failure mechanism of CFS reinforced concretes. For these purposes, four kinds of specimens are used, that is, concrete, respectively. Acoustic Emission(AE) technique was used to evaluate the characteristics of damage progress and failure mechanism of specimens. In addititon, two-dimensional AE source location was also performed to monitor crack initiation and propagation processes for four types of these specimens.

  • PDF

Effects of Electrospinning Parameters on the Fiber Formation and Application (전기방사 조건에 따른 나노섬유상의 구조 및 응용)

  • RYU, HO SUK;PARK, JIN SOO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.1
    • /
    • pp.71-80
    • /
    • 2018
  • Electrospinning is a versatile technique that utilizes electrostatic forces to produce very thin and fine fibers of polymer ranging from submicron to nanometer scale. The technique can be applied to fibers of a various polymer types. Working parameters in the electrospinning are very important to understand not only the nature of electrospinning but also the conversion of polymer solutions into nanofibers through electrospinning. Those parameters in the electrospinning can be broadly divided into three parts. The first parameter is solution parameters such as molecular weight of polymer, concentration, viscosity, surface tension and conductivity/surface charge density of solution. The second parameter is process such as voltage, distance between the collector and the tip of the syringe, shape of collectors, flow rate. The third parameter is ambient parameters such as humidity and temperature. Fibers which made by electrospinning with working parameters are applied for various fields according to shape such as medical, cloth, photodiode, a sensor technology, catalyst, filtration, battery etc.

A Study on Nondestructive Evaluation of Share Memory Alloy Composite at High Temperature (고온에서의 형상기억복합재료의 비파괴평가에 관한 연구)

  • Kang, Dong-Hyun;Lee, Jin-Kyung;Park, Young-Choul;Ku, Hoo-Taek;Lee, Kyu-Chang
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.186-191
    • /
    • 2001
  • Tensile residual stress happen by difference of coefficients of thermal expansion between fiber and matrix is one of the serious problems in metal matrix composite(MMC). In this study, TiNi alloy fiber was used to solve the problem of the tensile residual stress as the reinforced material. TiNi alloy fiber improves the tensile strength of composite by occurring compressive residual stress in matrix using shape memory effect of it. Pre-strain was added to generate compressive residual stress inside TiNi/A16061 shape memory alloy(SMA) composite. It was also evaluated the effect of compressive residual stress corresponding to pre-strains variation and volume fraction of TiNi alloy. AE technique was used to clarify the microscopic damage behavior at high temperature and the effect of pre-strain difference of TiNi/A16061 SMA composite. In addition, two dimensional AE source location technique was applied to inspect the crack initiation and propagation in composite.

  • PDF