• Title/Summary/Keyword: fiber self-compacting concrete

Search Result 38, Processing Time 0.017 seconds

Flowability and Strength Properties of High Flowing Self-Compacting Concrete with Steel Fiber Reinforced (강섬유가 혼입된 고유동 자기충전 콘크리트의 유동 및 강도 특성)

  • Choi, Yun-Wang;Choi, Wook;Jung, Jea-Gwone;An, Tae-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.1 s.53
    • /
    • pp.161-168
    • /
    • 2009
  • In this study, the concrete, in which the steel fiber(SF) with different volume-surface ratios and lengths was intermixed in High flowing Self-Compacting Concrete(HSCC), was produced to compare with steel fiber reinforced concrete as a part of plan to improve the workability and the quality of steel fiber reinforced concrete. As the result of experiment, the flowing and passing characteristics of HSCC intermixed with SF was highly improved as there was no fiber ball phenomenon due to the effect of high flowability and the viscosity, and in the identical range of compressive strength, it showed the tendency that the splitting and flexural strength was increasing as the length was getting longer regardless of volume-surface ratio when compared with HSCC which was intermixed with SF. It is estimated that in case of application of HSCC intermixed with steel fiber to work sites, it would be possible to improve the workability and the quality which would be better than that of steel fiber reinforced concrete which has been used.

Experimental investigation of steel fiber effects on anti-penetration performance of self-compacting concrete

  • Jian Ma;Liang Bian;Jie Zhang;Kai Zhao;Huayan Yao;Yongliang Zhang
    • Advances in concrete construction
    • /
    • v.16 no.2
    • /
    • pp.119-126
    • /
    • 2023
  • Steel fiber reinforced self-compacting concrete (SFRSCC) has good workability such as high flowability and good cohesiveness. The workability, compressive strength, splitting tensile strength, and anti-penetration characteristics of three kinds of SFRSCC were investigated in this paper. The fraction of steel fibers of the SFRSCC is 0.5%, 1.5% and 2.0% respectively. The results of the static tests show that the splitting tensile strength increases with the increase of fraction of steel fibers, while the compressive strength of 1.5% SFRSCC is lowest. It is demonstrated that the anti-penetration ability of 1.5% SFRSCC subjected to a velocity projectile (200-500 m/s) is better than 0.5% and 2.0% SFRSCC according to the experimental results. Considering the steel fiber effects, the existing formula is revised to predict penetration depth, and it is revealed that the revised predicted depth of penetration is in good agreement with the experimental results. The conclusion of this paper is helpful to the experimental investigations and engineering application.

Predicting strength of SCC using artificial neural network and multivariable regression analysis

  • Saha, Prasenjit;Prasad, M.L.V.;Kumar, P. Rathish
    • Computers and Concrete
    • /
    • v.20 no.1
    • /
    • pp.31-38
    • /
    • 2017
  • In the present study an Artificial Neural Network (ANN) was used to predict the compressive strength of self-compacting concrete. The data developed experimentally for self-compacting concrete and the data sets of a total of 99 concrete samples were used in this work. ANN's are considered as nonlinear statistical data modeling tools where complex relationships between inputs and outputs are modeled or patterns are found. In the present ANN model, eight input parameters are used to predict the compressive strength of self-compacting of concrete. These include varying amounts of cement, coarse aggregate, fine aggregate, fly ash, fiber, water, super plasticizer (SP), viscosity modifying admixture (VMA) while the single output parameter is the compressive strength of concrete. The importance of different input parameters for predicting the strengths at various ages using neural network was discussed in the study. There is a perfect correlation between the experimental and prediction of the compressive strength of SCC based on ANN with very low root mean square errors. Also, the efficiency of ANN model is better compared to the multivariable regression analysis (MRA). Hence it can be concluded that the ANN model has more potential compared to MRA model in developing an optimum mix proportion for predicting the compressive strength of concrete without much loss of material and time.

Modelling the performance of self-compacting SIFCON of cement slurries using genetic programming technique

  • Cevik, Abdulkadir;Sonebi, Mohammed
    • Computers and Concrete
    • /
    • v.5 no.5
    • /
    • pp.475-490
    • /
    • 2008
  • The paper explores the potential of applicability of Genetic programming approach (GP), adopted in this investigation, to model the combined effects of five independent variables to predict the mini-slump, the plate cohesion meter, the induced bleeding test, the J-fiber penetration value, and the compressive strength at 7 and 28 days of self-compacting slurry infiltrated fiber concrete (SIFCON). The variables investigated were the proportions of limestone powder (LSP) and sand, the dosage rates of superplasticiser (SP) and viscosity modifying agent (VMA), and water-to-binder ratio (W/B). Twenty eight mixtures were made with 10-50% LSP as replacement of cement, 0.02-0.06% VMA by mass of cement, 0.6-1.2% SP and 50-150% sand (% mass of binder) and 0.42-0.48 W/B. The proposed genetic models of the self-compacting SIFCON offer useful modelling approach regarding the mix optimisation in predicting the fluidity, the cohesion, the bleeding, the penetration, and the compressive strength.

Effect of rubber fiber size fraction on static and impact behavior of self-compacting concrete

  • Thakare, Akshay A.;Siddique, Salman;Singh, Amardeep;Gupta, Trilok;Chaudhary, Sandeep
    • Advances in concrete construction
    • /
    • v.13 no.6
    • /
    • pp.433-450
    • /
    • 2022
  • The conventional disposal methods of waste tires are harmful to the environment. Moreover, the recycling/reuse of waste tires in domestic and industrial applications is limited due to parent product's quality control and environmental concerns. Additionally, the recycling industry often prefers powdered rubber particles (<0.60 mm). However, the processing of waste tires yields both powdered and coarser (>0.60 mm) size fractions. Reprocessing of coarser rubber requires higher energy increasing the product cost. Therefore, the waste tire rubber (WTR) less favored by the recycling industry is encouraged for use in construction products as one of the environment-friendly disposal methods. In this study, WTR fiber >0.60 mm size fraction is collected from the industry and sorted into 0.60-1.18, 1.18-2.36-, and 2.36-4.75-mm sizes. The effects of different fiber size fractions are studied by incorporating it as fine aggregates at 10%, 20%, and 30% in the self-compacting rubberized concrete (SCRC). The experimental investigations are carried out by performing fresh and hardened state tests. As the fresh state tests, the slump-flow, T500, V-funnel, and L-box are performed. As the hardened state tests, the scanning electron microscope, compressive strength, flexural strength and split tensile strength tests are conducted. Also, the water absorption, porosity, and ultrasonic pulse velocity tests are performed to measure durability. Furthermore, SCRC's energy absorption capacity is evaluated using the falling weight impact test. The statistical significance of content and size fraction of WTR fiber on SCRC is evaluated using the analysis of variance (ANOVA). As the general conclusion, implementation of various size fraction WTR fiber as fine aggregate showed potential for producing concrete for construction applications. Thus, use of WTR fiber in concrete is suggested for safe, and feasible waste tire disposal.

Fracture behavior of monotype and hybrid fiber reinforced self-compacting concrete at different temperatures

  • Mazloom, Moosa;Karimpanah, Hemin;Karamloo, Mohammad
    • Advances in concrete construction
    • /
    • v.9 no.4
    • /
    • pp.375-386
    • /
    • 2020
  • In the present study, the effect of basalt, glass, and hybrid glass-basalt fibers on mechanical properties and fracture behavior of self-compacting concrete (SCC) mixes have been assessed at room and elevated temperatures. To do so, twelve mix compositions have been prepared such that the proper workability, flowability, and passing ability have been achieved. Besides, to make comparison possible, water to binder ratio and the amount of solid contents were kept constant. Four fiber dosages of 0.5, 1, 1.5, and 2% (by concrete volume) were considered for monotype fiber reinforced mixes, while the total amount of fiber were kept 1% for hybrid fiber reinforced mixes. Three different portions of glass and basalt fiber were considered for hybridization of fibers to show the best cocktail for hybrid basalt-glass fiber. Test results indicated that the fracture energy of mix is highly dependent on both fiber dosage and temperature. Moreover, the hybrid fiber reinforced mixes showed the highest fracture energies in comparison with monotype fiber reinforced specimens with 1% fiber volume fraction. In general, hybridization has played a leading role in the improvement of mechanical properties and fracture behavior of mixes, while compared to monotype fiber reinforced specimens, hybridization has led to lower amounts of compressive strength.

Statistical variations in the impact resistance and mechanical properties of polypropylene fiber reinforced self-compacting concrete

  • Mastali, M.;Dalvand, A.;Fakharifar, M.
    • Computers and Concrete
    • /
    • v.18 no.1
    • /
    • pp.113-137
    • /
    • 2016
  • Extensive experimental studies on remarkable mechanical properties Polypropylene Fibre Reinforced Self-compacting Concrete (PFRSCC) have been executed, including different fibre volume fractions of Polypropylene fibers (0.25%, 0.5%, 0.75%, and 1%) and different water to cement ratios (0.21, 0.34, 0.38, and 0.41). The experimental program was carried out by using two hundred and sixteen specimens to obtain the impact resistance and mechanical properties of PFRSCC materials, considering compressive strength, splitting tensile strength, and flexural strength. Statistical and analytical studies have been mainly focused on experimental data to correlate of mechanical properties of PFRSCC materials. Statistical results revealed that compressive, splitting tensile, and flexural strengths as well as impact resistance follow the normal distribution. Moreover, to correlate mechanical properties based on acquired test results, linear and nonlinear equations were developed among mechanical properties and impact resistance of PFRSCC materials.

Development of fiber reinforced self-compacting concrete (FRSCC): Towards an efficient utilization of quaternary composite binders and fibers

  • Fediuk, Roman;Mosaberpanah, Mohammad A.;Lesovik, Valery
    • Advances in concrete construction
    • /
    • v.9 no.4
    • /
    • pp.387-395
    • /
    • 2020
  • This study has been carried out in two-phases to develop Fiber Reinforced Self-Compacting Concrete (FRSCC) performance. In the first phase, the composition of the quaternary composite binder compromised CEM I 42.5N (58-70%), Rice Husk Ash (25-37%), quartz sand (2.5-7.5%) and limestone crushing waste (2.5-7.5%) were optimized. And in the second phase, the effect of two fiber types (steel brass-plated and basalt) was investigated on the SCC optimized with the optimum CB as disperse reinforcement at 6 different ratios of 1, 1.2, 1.4, 1.6, 1.8, and 2.0% by weight of mix for each type. In this study, the theoretical principles of the synthesis of self-compacting dispersion-reinforced concrete have been developed which consists of optimizing structure-formation processes through the use of a mineral modifier, together with ground crushed cement in a vario-planetary mill to a specific surface area of 550 m2 / kg. The amorphous silica in the modifier composition intensifies the binding of calcium hydroxide formed during the hydration of C3S, helps reduce the basicity of the cement-composite, while reducing the growth of portlandite crystals. Limestone particles contribute to the formation of calcium hydrocarbonate and, together with fine ground quartz sand; act as microfiller, clogging the pores of the cement. Furthermore, the results revealed that the effect of fiber addition improves the mechanical properties of FRSCC. It was found that the steel fiber performed better than basalt fiber on tensile strength and modulus of elasticity; however, both fibers have the same performance on the first crack strength and sample destruction of FRSCC. It also illustrates that there will be an optimum percentage of fiber addition.

Investigating the use of wollastonite micro fiber in yielding SCC

  • Sharma, Shashi Kant;Ransinchung, G.D.;Kumar, Praveen
    • Advances in concrete construction
    • /
    • v.6 no.2
    • /
    • pp.123-143
    • /
    • 2018
  • Self compacting concrete (SCC) has good flowability, passability and segregation resistance because of voluminous cementitious material & high coarse aggregate to fine aggregate ratio, and high free water availability. But these factors make it highly susceptible to shrinkage. Fibers are known to reduce shrinkage in concrete mixes. Until now for conserving cement, only pozzolanic materials are admixed in concrete to yield a SCC. Hence, this study compares the use of wollastonite micro fiber (WMF), a cheap pozzolanic easily processed raw mineral fiber, and flyash in yielding economical SCC for rigid pavement. Microsilica was used as a complimentary material with both admixtures. Since WMF has large surface area ($827m^2/kg$), is acicular in nature; therefore its use in yielding SCC was dubious. Binary and ternary mixes were constituted for WMF and flyash, respectively. Paste mixes were tested for compatibility with superplasticizer and trials were performed on a normal concrete mix of flexural strength 4.5 MPa to yield SCC. Flexural strength test and restrained shrinkage test were performed on those mixes, which qualified self compacting criteria. Results revealed that WMF admixed pastes have high water demand, and comparable setting times to flyash mixes. Workability tests showed that 20% WMF with microsilica (5-7.5%) is efficient enough in achieving SCC and higher flexural strength than normal concrete at 90 days. Also, stress rate due to shrinkage was lesser and time duration for final strain was higher in WMF admixed SCC which encourages its use in yielding a SCC than pozzolanic materials.

Mechanical properties of sustainable green self-compacting concrete incorporating recycled waste PET: A state-of-the-art review

  • Shireen T. Saadullah;James H. Haido;Yaman S.S. Al-Kamaki
    • Advances in concrete construction
    • /
    • v.16 no.1
    • /
    • pp.35-57
    • /
    • 2023
  • Majority of the plastic produced each year is being disposed in land after single-use, which becomes waste and takes up a lot of storage space. Therefore, there is an urgent need to find alternative solutions instead of disposal. Recycling and reusing the PET plastic waste as aggregate replacement and fiber in concrete production can be one of the eco- friendly methods as there is a great demand for concrete around the world, especially in developing countries by raising human awareness of the environment, the economy, and Carbon dioxide (CO2) emissions. Self-compacting concrete (SCC) is a key development in concrete technology that offers a number of attractive features over traditional concrete applications. Recently, in order to improve its durability and prevent such plastics from directly contacting the environment, various kinds of plastics have been added. This review article summarizes the latest evident on the performance of SCC containing recycled PET as eco-friendly aggregates and fiber. Moreover, it highlights the influence of substitution content, shape, length, and size on the fresh and properties of SCC incorporating PET plastic. Based on the findings of the articles that were reviewed for this study, it is observed that SCC made of PET plastic (PETSCC) can be employed in construction era owing to its acceptable mechanical and fresh properties. On the other hand, it is concluded that owing to the lightweight nature of plastic aggregate, Reusing PET waste in the construction application is an effective approach to reduces the earthquake risk of a building.