• Title/Summary/Keyword: fiber reinforcing effect

Search Result 187, Processing Time 0.024 seconds

Studies on the Effect of Fiber Reinforcing upon Mechanical Properties of Concrete and Crack Mode of Reinforoed Concrete (섬유보강이 콘크리트의 역학적 특성과 철근콘크리트의 균열성상에 미치는 영향에 관한 연구)

  • 박승범
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.20 no.2
    • /
    • pp.4645-4687
    • /
    • 1978
  • This study was attempted to investigate the mechanical properties of concrete and crack control effects of reinforced concrete with steel and glass fiber. The experimental program includes tests on the properties of fresh concrete containing fibers, compressive strength, tensile strength, flexural strength, Young's modulus, Shrinkage and deformation of steel or glass fiber reinforced concrete. Also this study was carried out to investigate the effect of steel or glass fiber to retard the development in reinforced concrete subject to uniaxial tension and thus facilitate the use of steels of higher strength. The major conclusions that can be drawn from the studies are as follows: 1. The effect of the fibers in various mixes on fresh concrete confirmed that fibers do have a significant effect on the properties of fresh concrete, bringing much more stable and exhibiting a signiflcant reduction in surface bleeding, and that the cohesion is greatly improved and the internal resistance increases with fiber concentration. But the addition of an excess contents and length of fibers brings about the reduction of workability. 2. With the addition of steel fibers(1.5% Vol.) to concrete, the compressive strength as compared with plain concrete showed a very slight increase, but excess addition, over 1.5% Vol. of steel and glass fiber reduced its strength. 3. Splitting tensile strength of fiber reinforced concrete showed a significant increase tendency, as compared with plain concrete. In case of containing steel fiber (2.5%, 30mm), it showed that the maximum increase rate of 1.48 times as much rate, and in case of containing glass fiber (2.5%, 30mm), the increase rate of strength was 1.25 times as much rate. 4. Flexural strength of fiber reinforced concrete showed a significant tendency, as compared with plain concrete. Containing steel fiber (2.5%, 30mm) showed the maximum increase rate of 1.64 times as much rate and containing glass fiber (2.5%, 30mm) showed the increase rate of strength of 1.32 times as much rate, and in general, the 30mm length brougth the best results. 5. The strength ratio ($\sigma$b/$\sigma$c and $\sigma$t/$\sigma$c) increased, when steel fiber's average spacing was up to 3.05mm, but decreased when beyond 3.05mm, and it was confirmed that tensile or flexural strengths of steel fiber reinforced concrete are apparently governed by fiber's average spacing. 6. The compressive strain of fiber reinforced concrete showed a significant increasing tendency as the fiber was added, but Young's modulus. with the addition of steel and glass fibers, showed a slight decrease tendency. And according to the increase of flexural strength, a considerable increase was seen in toughness. 7. With the addition of fiber's the shrinkage of concrete was significantly decreased, in both case of adding steel fibers 12.5%, 30mm, and showed a significant decrease ratio, in average 30.4% and 36.7%, as compared with plain concrete. 8. With the increase of fiber volume fraction and length, the gained stress in reinforcing bar in concrete specimens increased in all crack widths, but at different rates, with the decrease of fiber diameter, the stress showed a considerable increasing tendency. And the duoform steel fibers showed the greatest improvement, as compared with the other types tested. 9. The influence of fiber dimensions in order of significanse on the machanical properties of concrete and the crack control of reinforced concrete was explained as follows: content, length, aspect ratio and dimeter.

  • PDF

Flexural Behavior of Ultra High Performance Fiber Reinforced Concrete Segmental Box Girder (초고강도 섬유보강 콘크리트 분절형 박스 거더의 휨거동)

  • Guo, Qingyong;Han, Sang-Mook
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.109-116
    • /
    • 2014
  • The flexural behavior test of UHPC segmental box girder which has 160 MPa compressive strength and 15.4 m length was carried out. The effect of steel fibers in combination with reinforcing bars on improving the ductile performance of UHPC box girder was evaluated by comparing the flexural behavior of the UHPC segmental box girders made by the two kinds of mixing portion. The test variables are volume fraction of steel fibers and the arrangement of reinforcing bars. The behavior of UHPC box girder BF2 composed of 1% volume fraction of steel fibers and longitudinal reinforcing bars in web and upper flange with stirrup showed the similar ductile behavior with the girder BF1 composed of 2% volume fraction without stirrup in elastic stress region. But BF1 had the better stiffness and showed the more ductile behavior in inelastic stress region. Segmental interfaces of UHPC box girder have not any crack and slide until the final flexural collapse load.

A Study on the Fatigue Strength of the 3-D Reinforced Composite Joints (3-차원 보강 복합재 체결부의 피로강도 특성 연구)

  • Kim, Ji-Wan;An, Woo-Jin;Seo, Kyeong-Ho;Choi, Jin-Ho
    • Composites Research
    • /
    • v.35 no.5
    • /
    • pp.322-327
    • /
    • 2022
  • Composite lap joints have been extensively used due to their excellent properties and the demand for light structures. However, due to the weak mechanical properties in the thickness direction, the lap joint is easily fractured. various reinforcement methods that delay fracture by dispersing stress concentration have been applied to overcome this problem, such as z-pinning and conventional stitching. The Z-pinning is reinforcement method by inserting metal or carbon pin in the thickness direction of prepreg, and the conventional stitching process is a method of reinforcing the mechanical properties in the thickness direction by intersecting the upper and lower fibers on the preform. I-fiber stitching method is a promising technology that combines the advantages of both z-pinning and the conventional stitching. In this paper, the static and fatigue strengths of the single-lap joints reinforced by the I-fiber stitching process were evaluated. The single-lap joints were fabricated by a co-curing method using an autoclave vacuum bag process and I-fiber reinforcing effects were evaluated according to adherend thickness and stitching angle. From the experiments, the thinner the composite joint specimen, the higher the I-fiber reinforcement effect, and Ifiber stitched single lap joints showed a 52% improvement in failure strength and 118% improvement in fatigue strength.

An Experimental Study on Reinforcement Effect of FRP (FRP 보강효과에 관한 실험적 연구)

  • 김생빈;김동신
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.10a
    • /
    • pp.163-168
    • /
    • 1990
  • This study shows both through experiment and based on theory the reinforcement effectiveness when using FRP(Fiber Reinforced Plastics) as a means of reinforcing the concrete of the deteriorated concrete. Non-deteriorated concrete and deteriorated concrete which is deteriorated by freezing and thawing are made three type specimens (non-reinforced) concrete beam, one layer FRP reinforced concrete beam, two layer FRP reinforced concrete beam) for this purpose. Bending strength and cracking load ratio is measured by bending test.

  • PDF

Improved Compressive·Flexural Performance of Hybrid Fiber-Reinforced Mortar Using Steel and Carbon Fibers (강 및 탄소 섬유를 사용한 하이브리드 섬유보강 모르타르의 압축·휨성능 향상)

  • Heo, Gwang-Hee;Park, Jong-Gun;Seo, Dong-Ju;Koh, Sung-Gon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.48-59
    • /
    • 2021
  • In this study, experiments were conducted to investigate the compressive·flexural performances of single fiber-reinforced mortar (FRM) using only steel fiber or carbon fiber which has different material properties as well as hybrid FRM using a mixture of steel and carbon fibers. The mortar specimens incorporated steel and carbon fibers in the mix proportions of 1+0%, 0.75+0.25%, 0.5+0.5%, 0.25+0.75% and 0+1% by volume at a total volume fraction of 1.0%. Their mechanical performance was compared and examined with a plain mortar without fiber at 28 days of age. The experiments of mortar showed that the hybrid FRM using a mixture of 0.75% steel fibers + 0.25% carbon fibers had the highest compressive and flexural strength, confirming by thus the synergistic reinforcing effect of the hybrid FRM. On the contrast, in the case of hybrid FRM using a mixture of 0.5% steel fibers + 0.5% carbon fibers witnessed the highest flexural toughness, suggesting as a result the optimal fiber mixing ratio of hybrid FRM to improve the strength and flexural toughness at the same time. Moreover, the fracture surface was observed through a scanning electron microscope (SEM) for image analysis of the FRM specimen. These results were of great help for images analysis of hybrid reinforcing fibers in cement matrix.

Effect of Recycled PET Fiber Geometry and Length on the Plastic Shrinkage Cracking of Cement Based Composites (재생 PET 섬유의 형상 및 길이가 시멘트 복합 재료의 소성 수축 균열에 미치는 영향)

  • Won, Jong-Pil;Park, Chan-Gi;Kim, Hwang-Hee;Lee, Sang-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.2
    • /
    • pp.233-239
    • /
    • 2007
  • The main objective of this study was to evaluate the effect of recycled PET fiber made from waste PET bottle on the control of plastic shrinkage cracking of cement based composites. PET is blown as a plastic material and used in a variety products such as a beverage bottle. However, waste PET bottles are thrown after the usage, raising huge problems in terms of the environment. Thus, the research on the method to recycle the PET bottles indicates important aspects in environment and economy. The method to recycle waste PET bottles as a reinforcing fiber for cement based composites is one of effective methods in terms of the recycle of waste PET bottles. In this research, the effect of recycled PET fiber geometry and length on the control of plastic shrinkage was examined through thin slab tests. A test program was carried out to understand the influence of fiber geometry, length and fiber volume fraction. Three type of recycled PET fibers including straight, twist crimped and embossed type. Three volume fraction and two fiber length were investigated for each of the three fiber geometry. Test results indicated that recycled PET fibers are effective in controlling plastic shrinkage cracking in cement based composites. In respect to effect of length of fiber, longer fiber was observed to have efficient cracking controlling with low volume fraction in same fiber geometry while shorter fiber controled plastic shrinkage cracking efficiently as addition rate increase. Also, embossed type fibers were more effective in controlling plastic shrinkage cracking than other geometry fiber at low volume fraction. But, for high volume fraction, straight type fibers were most effective in plastic shrinkage cracking controlling in cement based composites.

Fabrication and Mechanical Properties of TiNi/Al2024 Composites by Hot-Press Method (고온 프레스법에 의한 TiNi/Al2024 복합재료의 제조 및 기계적 특성평가)

  • Son, Yong-Kyu;Bae, Dong-Su;Park, Young-Chul;Lee, Gyu-Chang
    • Transactions of Materials Processing
    • /
    • v.18 no.1
    • /
    • pp.45-51
    • /
    • 2009
  • Shape memory alloy has been used to improve the tensile strength of composite by the occurrence of compressive residual stress in matrix using its shape memory effect. In order to fabricate shape memory alloy composite, TiNi alloy fiber and Al2024 sheets were used as reinforcing material and matrix, respectively. In this study, TiNi/Al2024 shape memory alloy composite was made by using hot press method. In order to investigate bonding condition between TiNi reinforcement and Al matrix, the micro-structure of interface was observed by using optical microscope and diffusion layer of interface was measured by using Electron Probe Micro Analyser. And the mechanical properties of composite with three parameters(volume fraction of fiber, cold rolling amount and test temperature) were obtained by tensile test. The most optimum bonding condition for fabrication the TiNi/Al2024 composite material was obtained as holding for 30min. under the pressure of 60MPa at 793K. The strength of composite material increased considerably with the volume fraction of fiber up to 7.0%. And the tensile strength of this composite increased with the reduction ratio and it also depends on the volume fraction of fiber.

Enhancement of Compressive and Shear Strength for Concrete Masonry Prisms with Steel Fiber-Reinforced Mortar Overlay (강섬유보강 모르타르 바름에 의한 콘크리트 조적 프리즘의 압축 및 사인장 강도 증진 효과)

  • Yu, Ji-Hoon;Myeong, Seong-Jin;Park, Ji-Hun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.1
    • /
    • pp.21-32
    • /
    • 2021
  • Concrete masonry prisms are strengthened with steel fiber-reinforced mortar (SFRM) overlay and tested for compressive and diagonal tension strength. Masonry prisms are produced in poor condition considering standard workmanship for masonry buildings in Korea. Amorphous steel fibers are adopted for SFRM, and appropriate mixing ratios of SFRM are derived considering constructability and strength. Masonry prisms are strengthened with different fiber volume ratios, while numerous strengthened faces and additional reinforcing meshes are produced for compression and diagonal tension tests. Compression and diagonal tension strength are increased by up to 122% and 856%, respectively, and the enhancement effect for diagonal tension strength was superior compared to compression strength. Finally, the test results and strength prediction equations based on existing literature and regression analysis are compared.

A Study on the Effect of Fiber Orientation on Impact Strength and Thermal Expansion Behavior of Carbon Fiber Reinforced PA6/PPO Composites (탄소섬유 강화 PA6/PPO 복합재료의 섬유 배향에 따른 충격강도 및 열팽창 거동에 관한 연구)

  • Won, Hee-Jeong;Seong, Dong-Gi;Lee, Jin-Woo;Um, Moon-Kwang
    • Composites Research
    • /
    • v.27 no.2
    • /
    • pp.52-58
    • /
    • 2014
  • Short fiber reinforced composites manufactured by injection molding have diverse fiber orientations variable with measuring positions even in the same specimen, which is caused by the flow induced fiber orientation. Fiber orientations considerably affect the mechanical and thermal properties of final composite products. In this study, fiber orientation of injection molded carbon fiber reinforced PA6/PPO composite was measured at several points of the specimen by optical microscopy analysis and the corresponding izod impact strength, coefficients of thermal expansion (CTE) were also measured to investigate the influence of local fiber orientation on the mechanical and thermal properties. Izod impact strength where fiber was perpendicular to the direction of crack propagation was higher than where fiber was parallel to the direction, which could be explained be the impact resistance reinforcing mechanism by fiber orientation. CTE was also lower where fiber was parallel to the measurement direction of CTE than where fiber was perpendicular to the direction, which could be also explained by the dimensional stability mechanism by fiber orientation.

Evaluation of Strengthening Performance of Stiff Type Polyurea Retrofitted RC Slab Based on Attachment Procedure (경질형 폴리우레아의 개발 및 보강 순서에 따른 RC 슬래브의 성능 평가)

  • Kim, Jang-Ho Jay;Park, Jeong-Cheon;Lee, Sang-Won;Kim, Sung-Bae
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.4
    • /
    • pp.511-520
    • /
    • 2011
  • Recent studies to improve reinforcement of structures have developed stiff type Polyurea by using highly polymized compound Polyurea, but the reinforcing effect of it appears to be merely good. To find the proper usage of Polyurea as structural reinforcement, stiff type Polyurea has developed by manipulating the ratio of the components that consist flexural type Polyurea and the developed stiff type Polyurea shows higher hardness and tensile capacity. The reinforcement effect evaluation of has been performed by the polyurea applied RC slab specimens, and the reinforcement effect of the combination of fiber sheet and polyurea has been tested. The results shows that the Polyurea applied specimens have significant improvement on hardness and ductility compare to those of unreinforced. Also, the specimens that stiff type Polyurea is sprayed on fiber sheet reinforcement has higher reinforcing effect than only sheet reinforced specimens. However, the specimens that and fiber sheet attached after polyurea applied on showed that the high toughness of fiber sheet restrains the ductile behavior of Polyurea due to the high ductility, thereby the specimen suffers the concentration of load, which leads the brittle fracture behavior.