• Title/Summary/Keyword: fiber reinforcement

검색결과 1,108건 처리시간 0.028초

Three-dimensional free vibration analysis of functionally graded fiber reinforced cylindrical panels using differential quadrature method

  • Yas, M.H.;Aragh, B. Sobhani;Heshmati, M.
    • Structural Engineering and Mechanics
    • /
    • 제37권5호
    • /
    • pp.529-542
    • /
    • 2011
  • Three dimensional solutions for free vibrations analysis of functionally graded fiber reinforced cylindrical panel are presented, using differential quadrature method (DQM). The orthotropic panel is simply supported at the edges and is assumed to have an arbitrary variation of reinforcement volume fraction in the radial direction. Suitable displacement functions that identically satisfy the simply supported boundary condition are used to reduce the equilibrium equations to a set of coupled ordinary differential equations with variable coefficients, which can be solved by differential quadrature method to obtain natural frequencies. The main contribution of this work is presenting useful results for continuous grading of fiber reinforcement in the thickness direction of a cylindrical panel and comparison with similar discrete laminate composite ones. Results indicate that significant improvement is found in natural frequency of a functionally graded fiber reinforced composite panel due to the reduction in spatial mismatch of material properties.

특수 가공된 셀룰로오스섬유보강 콘크리트의 초기 특성 (Properties of Specialty Cellulose Fiber Reinforced Concrete at Early Ages)

  • 원종필;박찬기
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.349-354
    • /
    • 1999
  • Specialty cellulose fibers processed for the reinforcement of concrete offer relatively high levels of elastic modulus and bond strength. The hydrophilic surfaces of specialty cellulose fibers facilitate their dispersion and bonding in concrete. Specialty cellulose fibers have small effective diameters which are comparable to the cement particle size, and thus promote close packing and development of dense bulk and interface microstructure in the matrix. The relatively high surface area and the close spacing of specialty cellulose fibers when combined with their desirable mechanical characteristic make them quite effective in the suppression and stabilization of microcracks in the concrete matrix. The properties of fresh mixed specialty cellulose fiber reinforced concrete and the contribution of specialty cellulose fiber to the restrained shrinkage crack reduction potential of cement composites at early age and theirs evaluation are presented in this paper. Results indicated that specialty cellulose fiber reinforcement showed an ability to reduce the total area significantly (as compared to plain concrete and polypropylene fiber reinforced concrete.

  • PDF

Braided 탄소섬유강화 알루미늄 기지 금속복합재료의 제조 및 기계적 특성평가 (Fabrication and Mechanical Characterization of Braided Carbon Fiber Reinforced Al Matrix Composites)

  • 김경태;이상관;홍순형
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.131-134
    • /
    • 2002
  • Braided carbon fiber reinforced Al matrix composites were developed and characterized. Braided carbon fiber preforms with braiding angles of $30^{\circ}$, $45^{\circ}$ and $60^{\circ}$ were manufactured by using a braiding machine. The manufactured braided carbon fibers were used as reinforcement to fabricate Al matrix composites by employing a pressure infiltration casting method. In the processing of pressure infiltration casting, important processing parameters such as melting temperature, preheating temperature of preform and applied pressure were optimized. Prediction of elastic constants on composites was performed by using the volume averaging method, which utilizes the coordinate transformation and the averaging of stiffeness and compliance constants based upon the volume of each reinforcement and matrix material. The elastic moduli of composites were evaluated by using Resonant Ultrasound Spectroscopy(RUS) method and compared with the elastic moduli obtained from static tensile test method.

  • PDF

Incremental Damage Mechanics of Particle or Short-Fiber Reinforced Composites Including Cracking Damage

  • Cho, Young-Tae
    • Journal of Mechanical Science and Technology
    • /
    • 제16권2호
    • /
    • pp.192-202
    • /
    • 2002
  • In particle or short-fiber reinforced composites, cracking of the reinforcements is a significant damage mode because the cracked reinforcements lose load carrying capacity. This paper deals with an incremental damage theory of particle or short-fiber reinforced composites. The composite undergoing damage process contains intact and broken reinforcements in a matrix. To describe the load carrying capacity of cracked reinforcement, the average stress of cracked ellipsoidal inhomogeneity in an infinite body as proposed in the previous paper is introduced. An incremental constitutive relation on particle or short-fiber reinforced composites including progressive cracking of the reinforcements is developed based on Eshelby's (1957) equivalent inclusion method and Mori and Tanaka\`s (1973) mean field concept. Influence of the cracking damage on the stress-strain response of composites is demonstrated.

Fiber Reinforced Composite를 이용한 치료 증례 (Applications of Fiber Reinfored Composite in Dental Practice)

  • 조진형
    • 구강회복응용과학지
    • /
    • 제22권1호
    • /
    • pp.23-27
    • /
    • 2006
  • This case reports describe a new approach to the use of polymers in orthodontics, using a fiber reinforced composite(FRC). FRC was successfully used in a periodontal splints, fiber post for endodontic use, orthodontic retainer and space maintainers, implant prosthesis, large span bridge, management of cracked tooth, anchorage reinforcement in orthodontics. FRC has highly favorable mechanical properties, and its strength-to-weight ratios is superior to those of most alloys. FRC has potential for use in many applications in dentistry and is expected to gain increasing application and popularity in dentistry. These case reports show that FRC is a promising anchorage reinforcement material for use in orthodontic practice.

Three-dimensional free vibration analysis of cylindrical shells with continuous grading reinforcement

  • Yas, M.H.;Garmsiri, K.
    • Steel and Composite Structures
    • /
    • 제10권4호
    • /
    • pp.349-360
    • /
    • 2010
  • Three dimensional free vibrations analysis of functionally graded fiber reinforced cylindrical shell is presented, using differential quadrature method (DQM). The cylindrical shell is assumed to have continuous grading of fiber volume fraction in the radial direction. Suitable displacement functions are used to reduce the equilibrium equations to a set of coupled ordinary differential equations with variable coefficients, which can be solved by differential quadrature method to obtain natural frequencies. The main contribution of this work is presenting useful results for continuous grading of fiber reinforcement in the thickness direction of a cylindrical shell and comparison with similar discrete laminate composite ones. Results indicate that significant improvement is found in natural frequency of a functionally graded fiber reinforced cylinder due to the reduction in spatial mismatch of material properties and natural frequency.

Seismic capacity of brick masonry walls externally bonded GFRP under in-plane loading

  • Wang, Quanfeng;Chai, Zhenling;Wang, Lingyun
    • Structural Engineering and Mechanics
    • /
    • 제51권3호
    • /
    • pp.413-431
    • /
    • 2014
  • By carrying out the experiment of eight pieces of brick masonry walls with pilaster strengthened by Glass fiber reinforced polymer (GFRP) and one piece of normal masonry wall with pilaster under low reversed cyclic loading, the failure characteristic of every wall is explained; Seismic performances such as hysteresis, stiffness and its degeneration, deformation, energy consumption and influence of some measures including strengthening means, reinforcement area proportion between GFRP and wall surface, "through-wall" anchor on reinforcement effects are studied. The test results showed that strengthening modes have little influence on stiffness, stiffness degeneration and deformation of the wall, but it is another thing for energy consumption of the wall; The ultimate load, deformation and energy consumption of the walls reinforced by glass fiber sheets was increased remarkably, rigidity and its degeneration was slower; Seismic performance of the wall which considers strengthening means, reinforcement area proportion between GFRP and wall surface, "through-wall" anchor at the same time is better than under the other conditions.

아라미드 섬유강화 및 고무조성에 따른 콘크리트 도킹호스의 파열압력과 내마모도 특성 (Characteristics of Burst Pressure and Abrasion Resistance of Concrete Hose with Aramid Fiber Reinforcement and Rubber Composition)

  • 김용환;이승환;성일경;이여울;강명창
    • 한국기계가공학회지
    • /
    • 제17권6호
    • /
    • pp.105-110
    • /
    • 2018
  • A concrete docking hose of pump car's boom pipe line have been used in many construction sites. They are long structures with continuous cornering, similar to a trunk of the elephant, characterized by a very high pressure resistance of 20MPa. They need flexible materials and structure in order to move the hose smoothy. But commercial concrete hose is hard to handle and heavy owing to adaption of steel reinforcement. In this study, it is tried an experimental approach to the characteristic of inner rubber layer and abrasion resistance. Also, we are investigated the bursting pressure according to the reinforcement of the hose and propose the usefulness of the hose reinforced with high strengthened aramid fiber.

구조물 보강용 FRP 판과 광섬유 센서가 결합된 자기감지 보강재 (Self Sensing Reinforcement Combined with Fiber-Optic Sensor and FRP Strip for Structural Reinforcement)

  • 송세기;서수연;김강수
    • 대한건축학회논문집:구조계
    • /
    • 제35권8호
    • /
    • pp.123-130
    • /
    • 2019
  • Recently, it is required to develop a monitoring technology that combines an FBG sensor as a means for continuously monitoring whether reinforcing effect of FRP is maintained on FRP reinforced structural members. However, most existing researches focus on the insertion of FBG sensors into bar-shaped FRPs, and there is insufficient study on the details strip-type FRPs combined with FBG sensors. Therefore, in this paper, it is studied to develop a reinforcement in which a FBG sensor is combined with a FRP strip. Especially, combination of FRP and FBG sensor. For this, a series of experiments were performed to find the adhesive strength of fiber-FRP-epoxy joints, the tensile strength of FBG sensor part with reflection-lattice, and the performance depending on the connection method of FRF and FBG sensor. As a result of the study, it was found that a minimum strength of $216.15N/mm^2$ is required for incorporating FBG sensors in FRP using epoxy. It is considered that the adhesion length of epoxy joints should be more than 50mm. When the FBG sensor is attached to the FRP strip as an epoxy, it is considered appropriate to use the complete attachment and the sensor non-attachment method.

강도설계법으로 산정된 탄소섬유시트 보강 철근콘크리트 보의 공칭 휨모멘트 (Determination of Nominal Moment of Strengthening Beam with Carbon Fiber Sheets Using Strength Method)

  • 조백순;정진환;김성도;박대효;이우철
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.593-598
    • /
    • 2002
  • Routinely, strength method for the determination of the nominal moment of reinforced concrete beam is assumed to also be suitable for strengthening beams with carbon fiber sheets since typically strengthening beams compromise 98% by volume of reinforced concrete. Flexural capacity of strengthening beam is absolutely dependent upon the type of reinforcement materials, amount of reinforcement, anchoring system, adhesion capacity between reinforcement material and concrete. Therefore, it might be incorrect to use strength method for analysis and design of strengthening beam without considering the differences in the load-deflection curves, mechanism of failure, state of stress distribution, failure strain of the reinforcement. An flexural analysis based on force equilibrium and strain comparability has been developed for strengthening beam. Systematic experimental investigations are compared with analytical results. Then, the adaptation of strength method for strengthening beam have also been discussed.

  • PDF