• Title/Summary/Keyword: fiber reinforced materials

Search Result 1,508, Processing Time 0.029 seconds

Microfracture Behavior of Metallic-Continuous-Fiber-Reinforced Amorphous Matrix Composites Fabricated by Liquid Pressing Process (액상가압공정으로 제조된 금속 연속섬유강화 비정질 복합재료의 미세파괴거동)

  • Lee, Kyuhong;Lee, Sang-Bok;Lee, Sang-Kwan;Lee, Sunghak
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.8
    • /
    • pp.524-537
    • /
    • 2008
  • Zr-based amorphous alloy matrix composites reinforced with metallic continuous fibers were fabricated by liquid pressing process, and their fracture properties were investigated by directly observing microfracture process using an in situ loading stage installed inside a scanning electron microscope chamber. About 60 vol.% of metallic fibers were homogeneously distributed inside the amorphous matrix. Apparent fracture toughness of the stainless-steel- and tungsten-fiber-reinforced composites was lower than that of monolithic amorphous alloy, while that of the Ta-fiber-reinforced composite was higher. According to the microfracture observation, shear bands or cracks were initiated at the amorphous matrix, and the propagation of the initiated shear bands or cracks was effectively blocked by fibers, thereby resulting in stable crack growth which could be confirmed by the fracture resistance curve (R-curve) behavior. This increase in fracture resistance with increasing crack length improved fracture properties of the fiber-reinforced composites, and could be explained by mechanisms of formation of multiple shear bands or multiple cracks at the amorphous matrix and blocking of crack or shear band propagation and multiple necking at metallic fibers.

Field Case Study of Mechanized Form Roads Pavement Construction using Cellulose Fiber Reinforced Concrete (셀룰로오스 섬유보강 콘크리트를 사용한 기계화경작로 확·포장공사의 현장사례 연구)

  • Park, Jong Gun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.2
    • /
    • pp.47-56
    • /
    • 2015
  • At the present, the mechanized form roads pavement was constructed with plain concrete. Mostly, it was used by welded wire mesh for preventing crack. Cellulose fibers for the reinforcement of concrete offer relatively high levels of elastic modulus, fiber count (per unit weight), specific surface, and bond strength to cement-based materials. The construction of concrete pavement confirmed that cellulose fiber reinforced concrete was applicable to mechanized form roads pavement. In the study, cellulose fibers were used here at 0.08 % volume fraction, which is equivalent to a fiber content of $1.2kg/m^3$. Cellulose fiber reinforced concrete were compared with plain concrete. Field test results indicated that cellulose fiber reinforced concrete showed slightly to increase of 28 days compressive strength and improved the initial strength. it tended to increase of splitting tensile strength. Test results showed that the slump and air content tend to decreased. but, the variation of air contends is very little. Also, construction cost of cellulose fiber reinforced concrete is less than about 25.7 % the case of welded wire mesh previously used. Therefore, The cost reduction is expected to be possible in construction site by mechanized form roads pavement.

Strength and permeability of fiber-reinforced concrete incorporating waste materials

  • Xu, Yun;Xu, Yin;Almuaythir, Sultan;Marzouki, Riadh
    • Advances in concrete construction
    • /
    • v.13 no.2
    • /
    • pp.133-152
    • /
    • 2022
  • Ecological issues such as natural resource reduction and enormous waste disposals are increasingly leading in developing civilization toward sustainable construction. The two primary environmental issues are the depletion of natural resources and the disposal of trash in open landfills. Waste steel fiber (WSF) was investigated for usage as a cement-based concrete (CBC) constituent in this research. Recycling waste fibers both makes cement composites more long and cost-effective, also aids in pollution reduction. The objective of this study is to analyze the impacts of waste fiber on the fresh and mechanical features of concrete using recycled additives. A comparative research on the durability and mechanical qualities of fiber-reinforced concrete (FRC) constructed with natural aggregates was conducted for this aim. The obstacles to successful WSF recycling methods application in the building industry have been investigated, resulting that CBCs with these fibers make an economic and long lasting choice to deal with waste materials. The workability of fiber enhanced concrete was found to be comparable to that of normal concrete. Fibers have a considerable impact on the splitting tensile strength, flexural and compressive strength of recycled concrete. Fiber may enhance the water permeability. When the WSF content is 0.6 kg/m3, the water absorption is nearly half. Fibers would have no effect on its permeability.

Mechanical Characteristics of GF/recycled PET Thermoplastic Composites with Chopped Fiber According to Cross Section (단면형상에 따른 GF/rPET 열가소성 복합재료의 물리적 특성 연구)

  • Kim, Ji-hye;Lee, Eun-soo;Kim, Myung-soon;Sim, Jee-hyun
    • Textile Coloration and Finishing
    • /
    • v.29 no.4
    • /
    • pp.239-246
    • /
    • 2017
  • Recently fiber-reinforced thermoplastic composites have attracted great interest from industry and study because they offer unique properties such as high strength, modulus, impact resistance, corrosion resistance, and damping reduction which are difficult to obtain in single-component materials. The demand for plastics is steadily increasing not only in household goods, packaging materials, but also in high-performance engineering plastic and recycling. As a result, the technology of recycling plastic is also attracting attention. In particular, many paper have studied recycling systems based on recycled thermoplastics. In this paper, properties of Glass Fiber Reinforced Thermoplastic(GFRTP) materials were evaluated using recycled PET for injection molding bicycle frame. The effect on thermal and mechanical properties of recycled PET reinforced glass chop fiber according to fiber cross section and fiber content ratio were studied. And it was compared void volume and torque energy by glass fiber cross section, which is round section and flat section. Mechanical characteristics of resulting in GF/rPET has been increased by increasing fiber contents, than above a certain level did not longer increased. And mechanical properties of flat glass fiber reinforced rPET with low void volume were most excellent.

Mechanical Analysis of 3D Circular Braided Glass Fiber Reinforced Composites Using Elastic-Plastic Constitutive Equations (탄소성 구성 방정식을 이용한 삼차원 브레이드 복합재료의 역학적 해석)

  • Ryou Hansun;Lee Myoung-Gyu;Kim Jihoon;Chung Kwansoo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.147-150
    • /
    • 2004
  • In order to describe the mechanical behavior of highly anisotropic and asymmetric materials such as fiber­reinforced composites, the elastic-plastic constitutive equations were used here based on the recently developed yield criterion and hardening laws. As for the yield criterion, modified Drucker-Prager yield surface was used to represent the orthotropic and asymetric properties of composite materials, while the anisotropic evolution of back­stress was accounted for the hardening behavior. Experimental procedures to obtain the material parameters of the hardening laws and yield surface are presented for 3D Circular Braided Glass Fiber Reinforced Composites. For verification purpose, comparisons of finite element simulations using the elastic-plastic constitutive equations, anisotropic elastic constitutive equations and experiments were performed for the three point bending tests. The results of finite element simulations showed good agreements with experiments, especially for the elastic-plastic constitutive equations with yield criterion considering anisotropy as well as asymmetry and anisotropic back stress evolution rule.

  • PDF

Lightweight Floor Systems for Tall Buildings: A Comparative Analysis of Structural Material Efficiencies

  • Piyush Khairnar
    • International Journal of High-Rise Buildings
    • /
    • v.12 no.2
    • /
    • pp.145-152
    • /
    • 2023
  • Typical floor systems in contemporary tall buildings consist of reinforced concrete or composite metal deck over framing members and account for a majority of the structural weight of the building. The use of high-density materials, such as reinforced concrete and steel, increases the weight of floor systems, reducing the system's overall efficiency. With the introduction of high-performance materials, mainly mass timber products, and fiber-reinforced composites, in the construction industry, designers and engineers have multiple options to choose from when selecting structural materials. This paper discusses the application of mass timber and carbon fiber composites as structural materials in floor systems of tall buildings. The research focused on a comparative analysis of the structural system efficiency for five different design options for tall building floor systems. Finite Element Analysis (FEA) method was adopted to develop a simulation framework, and parametric structural models were simulated to evaluate the structural performance under specific loading conditions. Simulation results revealed the advantages of lightweight structural materials to improve system efficiency and reduce material consumption. The impact of mechanical properties of materials, loading conditions, and issues related to fire engineering and construction were briefly discussed, and future research topics were identified in conclusion.

Experimental Study on the Manufacture and the Mechanical Properties of Fiber Reinforced Calcium Silicates-Cement Composites Utilizing Fly Ash and Cement Sludge for Construction Materials(II) (플라이애쉬와 시멘트슬러지를 이용한 섬유보강 규산칼슘계 시멘트 복합체의 제조 및 역학적 특성에 관한 실험적 연구)

  • 박승범;임창덕;윤의식;김종호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.75-79
    • /
    • 1995
  • The results of an experimental study on the manufacture and the mechanical properties of fiber reinforced calcium silicates-cement composites utilizing by products (fly ash or cement sludge) for construction materials are presented in this paper. As the test results show, compressive, tensile, and flexural strength, fracture toughness of fiber reinforced calcium silicates-cement composites were improved by increasing the fly ash and fiber contents, but were decreased by increasing cement sludge contents. Somehat, especially increasing fiber contents the fracture toughness of the composites were remarkably increased. Also, the mechanical properties of the composites reinforcing alkali-resistance GF were higher than those of the composites reinforcing Samoa Pulp.

  • PDF

Improving the Mechanical Properties of Salt Core through Reinforcing Fibers

  • Ahrom Ryu;Soyeon Yoo;Min-Seok Jeon;Dongkyun Kim;Kiwon Hong;Sahn Nahm;Ji-Won Choi
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.159-163
    • /
    • 2023
  • Salt cores have attracted considerable attention for their application to the casting process of electric vehicle parts as a solution to ecological issues. However, the salt core still has low mechanical strength for use in high-pressure die casting. In this study, we investigated the improvements in the bending strength of KCl-based salt cores resulting from the use of reinforcing materials. KCl and Na2CO3 powders were used as matrix materials, and glass fiber and carbon fiber were used as reinforcing materials. The effects of carbon fiber and glass fiber contents on the bending strength properties were investigated. Here, we obtained a new fiber-reinforced salt core composition with improved bending strength for high-pressure die casting by adding a relatively small amount of glass fiber (0.3 wt%). The reinforced salt core indicates the improved properties, including a bending strength of 49.3 Mpa, linear shrinkage of 1.5%, water solubility rate of 16.25 g/min·m2 in distilled water, and hygroscopic rate of 0.058%.

Comparison between fiber-reinforced polymers and stainless steel orthodontic retainers

  • Lucchese, Alessandra;Manuelli, Maurizio;Ciuffreda, Claudio;Albertini, Paolo;Gherlone, Enrico;Perillo, Letizia
    • The korean journal of orthodontics
    • /
    • v.48 no.2
    • /
    • pp.107-112
    • /
    • 2018
  • Objective: The aim of this study was to examine the properties of fiber-reinforced composite and stainless steel twisted retainers for orthodontic retention. Methods: Three different span lengths (5.0, 8.0, and 14.0 mm) of fiber-reinforced composite were investigated. The three fiber-reinforced composite retainer groups were subdivided according to the storage condition (dry and wet), resulting in a total of six groups. Each stainless steel and fiber-reinforced composite group was comprised of six specimens. The three-point bending flexural test was conducted using a universal testing machine. ANOVA was used to assess differences in the maximum load and maximum stress according to the span length, material, and storage condition. Post-hoc comparisons were performed if necessary. Results: The maximum stress and maximum load were significantly (p < 0.001) associated with the span length, material, and storage condition. The significant interaction between the material and span length (p < 0.001) indicated the differential effects of the material for each span length on the maximum stress and maximum load, with the difference between materials being the highest for the maximum span length. Conclusions: Our findings suggest that fiber-reinforced composite retainers may be an effective alternative for orthodontic retention in patients with esthetic concerns or allergy to conventional stainless steel wires.

An Fundamental Experimental Study on the Strength Characteristics of Fiber-Reinforced Polymer Concrete (섬유보강 폴리머 콘크리트의 강도특성에 관한 기초적 실험적 연구)

  • 오병환;김영선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1989.10a
    • /
    • pp.5-8
    • /
    • 1989
  • Considerable efforts are still being made in the every part of the world to develop new construction materials. The polymer concrete is one of those promising new construction materials. The strength characteristics of fiber-reinforced polymer methods and filler contents on the properties of polymer concrete were explored. The effects of fiber addition are also discussed.

  • PDF