• Title/Summary/Keyword: fiber protein beam

Search Result 2, Processing Time 0.015 seconds

Effect of exercise on the stability of protein tissues

  • Liu, Weixiao;Liu, Yaorong
    • Advances in nano research
    • /
    • v.13 no.5
    • /
    • pp.487-497
    • /
    • 2022
  • This study investigates the stability of protein tissues regarding the vibration analysis based on the classical beam theory coupled with the nonlocal elasticity theory concerning the exercise impact. As reported in the previous research, four different types of protein tissues are supposed, and the influence of sports training is investigated. The protein tissues are made of protein fibers surrounded by an elastic foundation. The exercise enhances the muscle area and plays an essential role in the stability and strength of protein and muscle tissues. The results are examined in detail to examine the impact of different parameters on the stability of nano protein fibers.

Synthesis of Sulfonated Hollow PP-g-Styrene Fibrous Ion-exchange Membrane and Separation of BSA Protein (술폰화 PP-g-Styrene 중공사 이온교환막의 합성과 BSA 단백질 분리에 관한 연구)

  • 황택성;이진혁
    • Polymer(Korea)
    • /
    • v.26 no.4
    • /
    • pp.415-421
    • /
    • 2002
  • A sulfonated PP-g-styrene ion-exchange hollow fiber membrane was prepared by pre-irradiation method with E-beam followed by sulfonation reaction. Degree of grafting increased with the increase of styrene monomer concentration and showed the maximum value of 128% at 80% of styrene monomer composition. Sulfonation yield increased with the degree of grafting. At 100% degree of grafting, sulfonation yield showed the maximum value of 13.4%. Ion exchange capacity of sulfonated HPP-g-styrene of 3.42 meq/g was attained, resulting in the remarkable increase of adsorption ability BET analysis proved that the surface area of sulfonated HPP-g-styrene was 62.54 $m^2/g$ and the mean pore size was 25 $\AA$. From the BSA adsorption experiments, the adsorption amount of BSA was increased with sulfonation. At 13.4% sulfonation yield the adsorption amount of BSA was maximum as 3.8 mg/g. Sulfonated HPP-g-styrene was synthesized successfully and suitable for the adsorption and separation of BSA.