• Title/Summary/Keyword: fiber number

Search Result 1,237, Processing Time 0.028 seconds

Electrical Properties of Yarned Carbon Nanotube Fiber Resistors (Yarned CNT Fiber 저항체의 전기적 특성)

  • Lim, Youngtaek;Lee, Sunwoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.1
    • /
    • pp.59-62
    • /
    • 2017
  • CNT (carbon nanotube) resistors with low resistance and negative TCR (temperature coefficient of resistance) were fabricated with yarned CNT (carbon nanotube) fibers. The CNT fibers were prepared by yarning CNTs grown on the silicone substrate by CVD (chemical vapor deposition) method. The CNT resistors were fabricated by winding CNT fibers on the surface of ceramic rod. Both metal terminals were connected with the CNT fiber wound on the ceramic rod. We measured electrical resistance and thermal stability with the number of CNT fibers wound. The CNT resistor system shows linearly decreased resistance with the number of CNTs wound on the ceramic rod and saturated at 20 strands. The CNT resistor system has negative TCR between $-1,000{\sim}-2,000ppm/^{\circ}C$ and stable frequency properties under 100 kHz.

The Relationship Between Anatomical Characteristics and Compression Strength Parallel to Grain of Platanus orientalis L. (버즘나무의 해부학적 성질과 종압축강도와의 관계)

  • 오승원
    • Journal of the Korea Furniture Society
    • /
    • v.12 no.1
    • /
    • pp.21-26
    • /
    • 2001
  • This study was carried out to get some basic information on mechanical properties of Platanus orientalis L. for the rational utilization of this wood. Relationship of anatomical characteristics with compression strength parallel to grain was analyzed using stepwise regression technique. All possible combination of 8 independent variables were regressed on compression strength parallel to grain. The summarized results in this study were as follows: 1. The compression strength parallel to grain increased with the increase of wood fiber length and wood fiber width. The strength, however, decreased with increase of number of pore per $\textrm{mm}^2$ and tangential diameter of pore. 2. The major factors affecting compression strength parallel to grain in heartwood were length of wood fiber and number of pore $per{\;}{\textrm{mm}^2}$ but width of wood fiber and length of vessel element were the important factors in sapwood.

  • PDF

Separation of Colloidal Particles by Osmotic Sink Field Flow Fractionation Using UF Hollow Fiber Membranes

  • Shin, Se-Jong;Min, Byoung-Ryul;Park, Jin-Won;Ahh, Ik-Sung;Lee, Kang-Taek;Lee, Jae-Hoon
    • Korean Membrane Journal
    • /
    • v.3 no.1
    • /
    • pp.59-68
    • /
    • 2001
  • Unlike existent field flow fractionation, new method, osmotic sink field flow fractionation is introduced and used ultrafiltration hollow fiber membranes as separation channel. This hollow fiber osmotic sink field flow fractionation is called HF-OSFFF. A theory that describes the retention, relaxation, resolution, plate number for the system, has been developed and experimentally verified by separation model of po1ystyrene latex beads. At external field, it is measured that radial flow rates change according to various concentrations of PEG solutions. Concentration of PEG solution vs. radial flow rate is a linear relation. For diameter distribution of unknown polymer sample, HF-OSFFF compared with the commercial capillary hydrodynamic flow fractionation (CHDF).

  • PDF

Compensation of the Distorted WDM Channels in Ultra-long Transmission Link of 80 km × 56 Spans (80 km × 56 spans의 초장거리 전송 링크에서 왜곡된 WDM 채널의 보상)

  • Lee, Seong-Real
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.3
    • /
    • pp.251-257
    • /
    • 2019
  • The configuration of ultra-long optical transmission link with dispersion management and optical phase conjugation is proposed. The whole transmission link consist of 80 km (single mode fiber span) ${\times}$ 56 fiber spans. The artificial distribution of single mode fibers' lengths and residual dispersions in fiber spans, which are gradually increased/decreased as the span number is increased, is adopted to compensate for the distorted wavelength division multiplexed channels. Since the compensation effect through the artificial distribution in the previous researches is expected to decrease as the number of fiber spans are increased, three-time repetition of the artificial distribution patterns at intervals of 9 fiber spans applied into the link with dispersion management and optical phase conjugation is proposed. From the simulation results, it is confirmed that the compensation in the link configured by the special distribution pattern among 4 proposed patterns is slightly improved than the link configured by the conventional method, which is designed by the repeat-less distribution pattern.

Asbestos Concentrations in Ambient Air and Drained Rainwater from Slate Roofing by Construction Year and Roof Area (슬레이트 지붕의 설치년도와 면적에 따른 공기 및 유출 빗물 중의 석면 농도)

  • Jang, Bong-Ki;Ryu, Je-Young;Tak, Hyun-Wook;Song, Su-Jin;Lee, Jong-Wha;Lee, Gang-Ho;Choi, Jae-Ho
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.23 no.3
    • /
    • pp.196-204
    • /
    • 2013
  • Objectives: The purpose of this study is to analyze the number and influence factors of asbestos fibers in the air of farmhouses with asbestos cement slate roofing, as well as in rainwater per unit area of the asbestos cement slate roofing. Methods: At a distance of 1 m from the end of asbestos cement slate roofing in 20 farmhouses, the asbestos fiber in the air was collected three times on a clear day downwind from the prevailing wind. Rainwater falling from the slate roofing was collected four times with a 1.05-m rainwater pipe on a rainy day at the 20 farmhouses, filtered with a MCE filter, and analyzed with a phase contrast microscope. Results: The geometric mean of the number of asbestos fibers in the air of farmhouses with slate roofing was 0.11 fiber/L, and no samples exceeded the recommended standard of 10 fiber/L. As a result of multiple regression analysis, a factor which gave a significant influence to the asbestos fiber content in the air was the gross area of slate roofing at the target farmhouses. The number of asbestos fibers included in rainwater collected per 1 m2 of slate roofing was 1,753 fiber/$L{\cdot}m2$. As a result of multiple regression analysis, the number of asbestos fibers contained in rainwater per 1 m2 of slate showed a significantly higher tendency as the year of slate roofing installation at the target farmhouses receded. Conclusions: It was confirmed for the first time in Korea that asbestos from asbestos cement slate roofing scatters into the air.

Evaluation of fracture reduction performance of fiber reinforced mortar according to fiber type (섬유종류에 따른 섬유보강 모르타르의 파괴저감성능 평가)

  • Roh, Jong-Chan;Kim, Gyu-Yong;Kim, Hong-Seop;Koo, Kyung-Mo;Yoon, Min-Ho;Yoo, Jae-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.38-39
    • /
    • 2013
  • In this study, in regard to fiber reinforced mortar mixing steel fiber and 4types of organic fiber, impact test was carried out. Because to predict fracture reduction performance with flexural, tensile strength when types of fiber were different as impact reduction performance of concrete is closely related with toughness such as flexural strength, tensile strength and fracture energy etc. As a result, enhancement of toughness by fiber reinforcement controls the spall of rear. On the other hand in case of steel fiber relatively turned up high toughness in appropriate load compared with organic fiber but in same mixing rate, impact reduction performance by projectile showed low performance due to few number of an individual of mixing.

  • PDF

Multi-Core Fiber Based Fiber Bragg Gratings for Ground Based Instruments

  • Min, Seong-Sik;Lindley, Emma;Leon-Saval, Sergio;Lawrence, Jon;Bland-Hawthorn, Joss
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.53.2-53.2
    • /
    • 2015
  • Fiber Bragg gratings (FBGs) are the most compact and reliable method of suppressing atmospheric emission lines in the infrared for ground-based telescopes. It has been proved that real FBGs based filters were able to eliminate 63 bright sky lines with minimal interline losses in 2011 (GNOSIS). Inscribing FBGs on multi-core fibers offers advantages. Compared to arrays of individual SMFs, the multi-core fiber Bragg grating (MCFBG) is greatly reduced in size, resistant to damage, simple to fabricate, and easy to taper into a photonics lantern (PRAXIS). Multi-mode fibers should be used and the number of modes has to be large enough to capture a sufficient amount of light from the telescope. However, the fiber Bragg gratings can only be inscribed in the single-mode fiber. A photonic lantern bi-directionally converts multi-mode to single-mode. The number of cores in MCFBGs corresponds to the mode. For a writing system consisting of a single ultra-violet (UV) laser and phase mask, the standard writing method is insufficient to produce uniform MCFBGs due to the spatial variations of the field at each core within the fiber. Most significant technical challenges are consequences of the side-on illumination of the fiber. Firstly, the fiber cladding acts as a cylindrical lens, narrowing the incident beam as it passes through the air-cladding interface. Consequently, cores receive reduced or zero illumination, while the focusing induces variations in the power at those that are exposed. The second effect is the shadowing of the furthest cores by the cores nearest to the light source. Due to a higher refractive index of cores than the cladding, diffraction occurs at each core-cladding interface as well as cores absorb the light. As a result, any core that is located directly behind another in the beam path is underexposed or exposed to a distorted interference pattern from what phase mask originally generates. Technologies are discussed to overcome the problems and recent experimental results are presented as well as simulation results.

  • PDF

Correlation Between Flexural Toughness and Cracking Characteristics of Micro-fiber Reinforced Mortar According to Fiber Contents (마이크로 섬유보강 모르타르의 휨 인성과 균열 특성의 상관관계)

  • Shin, Kyung-Joon;Jang, Kyu-Hyou;Kim, Eui Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2A
    • /
    • pp.249-257
    • /
    • 2008
  • Various methods have been used to reinforce the cementitious material such as mortar and concrete that have weak tensile strength. Major reinforcing method is to mix matrix with fibers which have strong tensile strength. Recently, micro-fiber reinforced mortar has been studied which removes coarse aggregate and uses micro-fiber with small diameter in order to homogenize the matrix properties and maximize the performance of fiber. Performance of micro-fiber reinforced mortar showing multiple cracking behavior is hardly represented only by the flexural toughness. Therefore, This paper reports the cracking behavior as well as mechanical behavior for various mixtures which have different fiber type and mixture proportions to find the proper parameter representing the cracking characteristic. Correlations between flexural toughness and various cracking characteristics such as cracking area, width and number are explored. As a result, it is found that flexural toughness, volume of fiber and number of cracks are suitable for representing the characteristics of micro-fiber reinforced mortar.

A Study on Mechanical Characteristics of Reinforced Concrete Columns Confined with Carbon Fiber Sheet (CFS로 횡보강된 철근콘크리트 기둥의 역학적 특성에 관한 연구)

  • 권영웅;정성철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.743-749
    • /
    • 1999
  • Recently new rehabilitation techniques have been proposed with advanced composite materials like carbon fiber, aramid, glass fiber sheet and so forth. The purpose of this paper is to investigate the mechanical characteristics of reinforced concrete columns confined with carbon fiber sheet and evaluate the degree of their strengthening effect. For the test, the specimen size of column is 15cm$\times$15cm$\times$90cm reinforced with 4 number of main bars of 10 mm diameter, tied bars of 6 mm diameter and slenderness ratio 20. Columns were wrapped with carbon fiber sheet along the column length. It is necessary to make some assumption regarding the confinement of carbon fiber sheet to apply to reinforced concrete columns under concentric loads. The strength gain effect of columns confined with carbon fiber sheet could be predicted using the proposed equation.

  • PDF