• Title/Summary/Keyword: fiber fraction

Search Result 631, Processing Time 0.028 seconds

Structural behavior of concrete walls reinforced with ferrocement laminates

  • Shaheen, Yousry B.I.;Refat, Hala M.;Mahmoud, Ashraf M.
    • Structural Engineering and Mechanics
    • /
    • v.78 no.4
    • /
    • pp.455-471
    • /
    • 2021
  • The present work focuses on experimental and numerical performance of the ferrocement RC walls reinforced with welded steel mesh, expanded steel mesh, fiber glass mesh and tensar mesh individually. The experimental program comprised twelve RC walls having the dimensions of 450 mm×100 mm×1000 mm under concentric compression loadings. The studied variables are the type of reinforcing materials, the number of mesh layers and volume fraction of reinforcement. The main aim is to assess the influence of engaging the new inventive materials in reinforcing the composite RC walls. Non-linear finite element analysis; (NLFEA) was carried out to simulate the behavior of the composite walls employing ANSYS-10.0 Software. Parametric study is also demonstrated to check out the variables that can mainly influence the mechanical behavior of the model such as the change of wall dimensions. The obtained numerical results indicated the acceptable accuracy of FE simulations in the estimation of experimental values. In addition, the strength gained of specimens reinforced with welded steel mesh was higher by amount 40% compared with those reinforced with expanded steel mesh. Ferrocement specimens tested under axial compression loadings exhibit superior ultimate loads and energy absorbing capacity compared to the conventional reinforced concrete one.

Permeability prediction of plain woven fabric by using control volume finite element method (검사체적 방법을 이용한 평직의 투과율 계수 예측)

  • Y. S. Song;J. R. Youn
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.181-183
    • /
    • 2002
  • The accurate permeability for preform is critical to model and design the impregnation of fluid resin in the composite manufacturing process. In this study, the in-plane and transverse permeability for a woven fabric are predicted numerically through the coupled flow model which combines microscopic with macroscopic flow. The microscopic and macroscopic flow which are flows within the micro-unit and macro-unit cell, respectively, are calculated by using 3-D CVFEM(control volume finite element method). To avoid checker-board pressure field and improve the efficiency on numerical computation, A new interpolation function for velocity is proposed on the basis of analytic solutions. The permeability of plain woven fabric is measured through unidirectional flow experiment and compared with the permeability calculated numerically. Based on the good agreement of the results, the relationships between the permeability and the structures of preform such as the fiber volume fraction and stacking effect can be understood. The reverse and the simple stacking are taken in account. Unlike past literatures, this study is based on more realistic unit cell and the improved prediction of permeability can be achieved. It is observed that in-plane flow is more dominant than transverse flow in the real flow through preform and the stacking effect of multi-layered preform is negligible. Consequently, the proposed coupled flow model can be applied to modeling of real composite materials processing.

  • PDF

Hygrothermal sound radiation analysis of layered composite plate using HFEM-IBEM micromechanical model and experimental validation

  • Binita Dash;Trupti R Mahapatra;Punyapriya Mishra;Debadutta Mishra
    • Structural Engineering and Mechanics
    • /
    • v.89 no.3
    • /
    • pp.265-281
    • /
    • 2024
  • The sound radiation responses of multi-layer composite plates subjected to harmonic mechanical excitation in hygrothermal environment is numerically investigated. A homogenized micromechanical finite element (FE) based on the higher-order mid-plane kinematics replicating quadratic function as well as the through the thickness stretching effect together with the indirect boundary element (IBE) scheme has been first time employed. The isoparametric Lagrangian element (ten degrees of freedom per node) is used for discretization to attain the hygro-thermo-elastic natural frequencies and the modes of the plate via Hamilton's principle. The effective material properties under combined hygrothermal loading are considered via a micromechanical model. An IBE method is then implemented to attain structure-surrounding coupling and the Helmholtz wave equation is solved to compute the sound radiation responses. The effectiveness of the model is tested by converging it with the similar analytical/numerical results as well as the experimentally acquired data. The present scheme is further hold out for solving diverse numerical illustrations. The results revealed the relevance of the current higher-order FE-IBE micromechanical model in realistic estimation of hygro-thermo-acoustic responses. The geometrical parameters, volume fraction of fiber, layup, and support conditions alongside the hygrothermal load is found to have significant influence on the vibroacoustic characteristics.

Protein Fractionation of Whole Crop Silages, and Effect of Borate-phosphate Buffer Extraction on In vitro Fermentation Characteristics, Gas Production and Degradation (사료작물 사일리지의 단백질 분획 및 Borate-phosphate Buffer 추출이 In vitro 발효성상, Gas 발생 그리고 분해율에 미치는 효과)

  • Shinekhuu, Judder;Jin, Guang-Lin;Ji, Byung-Ju;Li, Xiangzi;Oh, Young-Kyoon;Hong, Seong-Ku;Song, Man-Kang
    • Journal of Animal Science and Technology
    • /
    • v.51 no.5
    • /
    • pp.369-378
    • /
    • 2009
  • Protein fractionation was evaluated from whole crop silages of rye (RS), wheat (WS), triticale (TS), oat (OS), barley (BS), and rice straw silage (RSS), and in vitro trial was carried out to examine the effect of silage and extraction of soluble protein on fermentation characteristics, total gas production and degradation. Soluble protein of silages was extracted with borate-phosphate buffer, and fermentation characteristics, gas production and degradation of silages were estimated by incubating anaerobically the mixed solution of strained rumen fluid and artificial saliva (1:1, v/v) containing dried and ground silages placed in nylon bag at $39^{\circ}C$ up to 48h. Soluble protein (SP) content was lowest for RSS as 2.11% in total CP compared to those for other silages. Highest A fraction (NPN) was observed from RS (74.33% of total CP) while those from TS and RSS were relatively low (48%). B2 fraction was relatively higher for RS, RSS and WS than for TS and BS. $B_3$ fraction was lowest in WS among silages. C fraction (27.07) in RSS was higher than in other silages (1.40~9.93%). pH in incubation solution was increased (P<0.01~P<0.001) for extracted silages up to 12h but decreased (P<0.01) at 48h for non-extracted ones. Contents of ammonia-N (P<0.001) and total VFA (P<0.01~P<0.001) were higher for non-extracted silages than for extracted ones. Acetate proportion was increased (P<0.001) in buffer extracted silages while those of propionate and butyrate were decreased (P<0.001) up to 24h incubation. Increased (P<0.001) total gas production was obtained from non-extracted silages up to 12h while gas production was increased (P<0.01) in extracted ones thereafter. In vitro degradation of dry matter and CP was increased (P<0.001) in non-extracted silages but that of neutral detergent fiber was increased (P<0.001) in extracted ones without difference among silages. Difference in mean values of degradability for each silage prior to- and post extraction with borate buffer, however, was not found among silages. It may be concluded that high NPN content of silages may reduce the protein availability in silages and borate buffer soluble components in silages can stimulate the early stage of fermentation.

Life Prediction of Composite Pressure Vessels Using Multi-Scale Approach (멀티 스케일 접근법을 이용한 복합재 압력용기의 수명 예측)

  • Jin, Kyo-Kook;Ha, Sung-Kyu;Kim, Jae-Hyuk;Han, Hoon-Hee;Kim, Seong-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3176-3183
    • /
    • 2010
  • A multi-scale fatigue life prediction methodology of composite pressure vessels subjected to multi-axial loading has been proposed in this paper. The multi-scale approach starts from the constituents, fiber, matrix and interface, leading to predict behavior of ply, laminates and eventually the composite structures. The multi-scale fatigue life prediction methodology is composed of two steps: macro stress analysis and micro mechanics of failure based on fatigue analysis. In the macro stress analysis, multi-axial fatigue loading acting at laminate is determined from finite element analysis of composite pressure vessel, and ply stresses are computed using a classical laminate theory. The micro stresses are calculated in each constituent from ply stresses using a micromechanical model. Three methods are employed in predicting fatigue life of each constituent, i.e. a maximum stress method for fiber, an equivalent stress method for multi-axially loaded matrix, and a critical plane method for the interface. A modified Goodman diagram is used to take into account the generic mean stresses. Damages from each loading cycle are accumulated using Miner's rule. Monte Carlo simulation has been performed to predict the overall fatigue life of a composite pressure vessel considering statistical distribution of material properties of each constituent, fiber volume fraction and manufacturing winding angle.

Effect of bamboo shoot dietary fiber on gel properties, microstructure and water distribution of pork meat batters

  • Li, Ke;Liu, Jun-Ya;Fu, Lei;Zhao, Ying-Ying;Zhu, He;Zhang, Yan-Yan;Zhang, Hua;Bai, Yan-Hong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.7
    • /
    • pp.1180-1190
    • /
    • 2020
  • Objective: To develop healthier comminuted meat products to meet consumer demand, the gel properties, rheological properties, microstructure and water distribution of pork meat batters formulated with various amounts of bamboo shoot dietary fiber (BSDF) were investigated. Methods: Different levels of BSDF (0% to 4%) were added to pork batters, and the pH, color, water-holding capacity, texture and rheological properties of pork batters were determined. Then, pork batters were analyzed for their microstructure and water distribution using scanning electron microscopy (SEM) and low-field nuclear magnetic resonance (LF-NMR). Results: Compared with the control, BSDF addition into meat batters showed a significant reduction in L*-value and a significant increase in b*-value (p<0.05). BSDF addition of up to 4% reduced the pH value of pork batters by approximately 0.15 units; however, the cooking loss and expressible water loss decreased significantly (p<0.05) with the increased addition of BSDF. The hardness and gel strength were noticeably enhanced (p<0.05) as the content of BSDF increased. The rheological results showed that BSDF added into pork batters produced higher storage modulus (G') and loss modulus (G") values. The SEM images suggested that the addition of BSDF could promote pork batters to form a more uniform and compact microstructure. The proportion of immobilized water increased significantly (p<0.05), while the population of free water was decreased (p<0.05), indicating that BSDF improved the water-holding capability of pork batters by decreasing the fraction of free water. Conclusion: BSDF could improve the gel properties, rheological properties and water distribution of pork meat batters and decrease the proportion of free water, suggesting that BSDF has great potential as an effective binder in comminuted meat products.

Characterization of Tussah (Antheraea pernyi) Silk Fibroin Powder Prepared by HCI and NaOH (작잠견피브로인 분말의 제조와 그 특성)

  • Kweon, Hae-Yong;Lee, Kwang-Gill;Lee, Yong-Woo
    • Journal of Sericultural and Entomological Science
    • /
    • v.41 no.1
    • /
    • pp.54-60
    • /
    • 1999
  • Antheraea pernyi silk powder was prepared by treatment with HCl and NaOH. The degree of hydrolysis of Antheraea pernyi silk fiber was examined. The morphology and structural characteristics of Antheraea pernyi silk powder were investigated by using SEM, FTIR and X-ray diffractometer. As the concentration of HCl and NaOH and tratment temperature increased, in general, the degree of hydrolysis of Antheraea pernyi silk fiber increased. On the other hand, the degree of hydrolysis of Antheraea pernyi treated with 3 N NaOH at 120$^{\circ}C$ for 24 hr was 70 wt%, which was lower than that of 90$^{\circ}C$(83 wt%). The morphology of acid/alkali resistance fraction of Antheraea pernyi silk fibroin was transformed from fiber form to powered one with an increase of hydrolysis. The conformation of Antheraea pernyi silk powder characterized by FT-IR spectrometer and X-ray diffractometer ${\beta}$-sheet and ${\alpha}$-helix structure.

  • PDF

Genetic Variability in the Fodder Yield, Chemical Composition and Disappearance of Nutrients in Brown Midrib and White Midrib Sorghum Genotypes

  • Singh, Sultan;Prasad, S.V.Sai;Katiyar, D.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.9
    • /
    • pp.1303-1308
    • /
    • 2003
  • Samples of eleven brown midrib (ICSU 96031, ICSU 93046, ICSU 96082, ICSU 96078, ICSU 96075, ICSU 95101, ICSU 96034, ICSU 96063, ICSU 45116, ICSA 93-3 and ICSA 3845 X 3816) and nine white midrib genotypes (ICSU 96050, ICSU 96030, ISU 95082, SSG 59-3, FSHI 93-1, FSHI 2219A X 3211, HC 171, ICSA 93-2 and ICSA 93-1) based on their phenotypic appearance were collected at 50 per cent flowering from the sorghum germplasm grown at Research farm of IGFRI, Jhansi. These genotypes were evaluated with respect to crude protein, fiber composition, in-sacco dry matter, OM, cell wall components disappearance/digestibility besides the fodder yield, total phenolic and availability index values. Brown midrib genotypes were lower (p<0.05) in NDF, ADF, cellulose and acid detergent lignin concentration than white midrib genotypes. Mean NDF, ADF, cellulose and lignin contents were 69.4, 42.1, 35.4 and 5.7% in brown mid rib vis-a vis 75.8, 47.5, 39.6 and 7.3% in white mid rib genotypes. Nonsignificant (p>0.05) differences were observed in dry matter, crude protein and organic matter contents between brown midrib and white midrib genotypes. Phenolic contents were significantly (p<0.05) lower in browm mid rib (0.2) than white mid rib (0.3%) sorghum. Brown midrib genotypes exhibited significantly (p<0.05) higher in-sacco DM, OM and CP disappearance than normal (white midrib) genotypes. The mean degradability of DM, OM and CP was 64.1, 62.6 and 79.6% in brown mid rib and 53.1, 54.0 and 76.6% in white mid rib genotypes, respectively. There were no significant (p>0.05) differences between genotypes in extent of fiber fraction degradability though in-sacco NDF and ADF degradability was more by 5 and 4 units, respectively in brown midrib genotypes vis-a-vis white midrib genotypes. Average fodder yield (green and dry g/plant) and availability index (%) values were significantly (p<0.05) higher for brown midrib (474.2, 129.8 and 80.4) genotypes than white midrib (375.0, 104.8 and 69.2) genotypes. Lignin contents had significant negative correlation with DM, OM, NDF and ADF degradability. The results of the study revealed that brown midrib genotypes are superior not only with regard to chemical entities and disappearance of DM and fiber fractions but also better in respect of fodder yield and availability index values. Thus, brown midrib sorghum strains may be useful in increasing digestibility, intake, feed efficiency and animal performance.

Characteristics of Wet and Dried Distillers Grains on In vitro Ruminal Fermentation and Effects of Dietary Wet Distillers Grains on Performance of Hanwoo Steers

  • Kim, Ill Young;Ahn, Gyu Chul;Kwak, Hyung Jun;Lee, Yoo Kyung;Oh, Young Kyoon;Lee, Sang Suk;Kim, Jeong Hoon;Park, Keun Kyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.5
    • /
    • pp.632-638
    • /
    • 2015
  • Two experiments were conducted to evaluate the nutrient composition, in vitro dry matter disappearance (IVDMD) and organic matter disappearance (IVOMD) of three kinds of distillers grains (DG); i) wet distillers grains (WDG, KRW 25/kg), ii) dried distillers grains (DDG, KRW 280/kg), iii) dried distillers grains with solubles (DDGS, KRW 270/kg) produced from tapioca 70% and rice 30%, and to evaluate dietary effects of WDG on the performance of Hanwoo steers. In Exp. 1, twelve-WDG, four-DDG and one-DDGS were collected from seven ethanol plants. Average crude protein, crude fiber, neutral detergent fiber, and acid detergent fiber of WDG, DDG, and DDGS were: 32.6%, 17.8%, 57.5%, and 30.2% for WDG, 36.7%, 13.9%, 51.4%, and 30.5% for DDG, and 31.0%, 11.9%, 40.3%, and 21.2% for DDGS (DM basis), respectively. The DDGS had a higher quantity of water-soluble fraction than WDG and DDG and showed the highest IVDMD (p<0.05) in comparison to others during the whole experimental time. The IVDMD at 0 to 12 h incubation were higher (p<0.05) in DDG than WDG, but did not show significant differences from 24 to 72 h. The same tendency was observed in IVOMD, showing that DG made from tapioca and rice (7:3) can be used as a feed ingredient for ruminants. Considering the price, WDG is a more useful feed ingredient than DDG and DDGS. In Exp. 2, 36 Hanwoo steers of 21 months ($495.1{\pm}91kg$) were randomly assigned to one of three dietary treatments for 85 days; i) Control (total mixed ration, TMR), ii) WDG 10% (TMR containing 10% of WDG, as fed basis), and iii) WDG 20% (TMR containing 20% of WDG, as fed basis). With respect to body weight and average daily gain, there were no differences between control and WDG treatments during the whole experimental period. Dry matter intake of control (9.34 kg), WDG 10% (9.21 kg) and 20% (8.86 kg) and feed conversion ratio of control (13.0), WDG 10% (13.2) and 20% (12.1) did not show differences between control and WDG treatments. Thus, the use of WDG up to 20% in TMR did not show any negative effect on the performance of Hanwoo steers.

Mineralogical Characterization of Asbestos in Soil at Daero-ri, Seosan, Chungnam, Korea (충남 서산 대로리 일대 토양 내 석면의 광물학적 특성)

  • Kim, Jaepil;Jung, Haemin;Song, Suckwhan;Lim, HoJu;Lee, WooSeok;Roh, Yul
    • Economic and Environmental Geology
    • /
    • v.47 no.5
    • /
    • pp.479-488
    • /
    • 2014
  • Naturally occurring asbestos (NOA) from disturbance of rocks and soils has been overlooked as a source of exposure that could potentially have a detrimental impact on human health. But, few researches on mineralogical characteristics of NOA occurred in soils have been reported in Korea. Therefore, the objective of this study was to investigate the mineralogical characteristics of NOA occurred in soils at Daero-ri area, Seosan, Chungnam Province, Korea. Sedimentation method was used for particle size separation of the asbestos-containing soils. XRD and PLM analyses were used to characterize mineralogical characteristics and mineral assemblages in soils. SEM-EDS and TEM-EDS analyses were used to characterize mineral morphology and chemical composition. Particle size analyses of the asbestos-containing soils showed they were composed of 26-93% sand, 4-23% silt and 3-70% clay. Soil texture of the soils was mainly sand, sandy loam, sandy clay, and clay. PLM analyses of the soil showed that most of the soil contained asbestiform tremolite and actinolite. The average content of asbestos in the soil was 1.5 wt. %. Therefore, the soil can be classified into asbestos-contaminated soils based on U. S. Environmental Protection Agency classification (content of asbestos in contaminated soil > 1%). Morphologically different types of tremolite such as long fibrous, needle-like, fiber bundle, bladed and prismatic forms co-existed. Prismatic tremolite was dominant in sand fraction and asbestiform tremolite was dominant in silt fraction. This study indicates that the prismatic form of tremolite transform gradually into a fibrous form of tremolite due to soil weathering because tremolite asbestos was mainly existed in silt fraction rather than sand fraction.