• Title/Summary/Keyword: fiber fraction

Search Result 631, Processing Time 0.029 seconds

Effect of Extruded Products Made with Cassava Starch Blended with Oat Fiber and Resistant Starch on the Hypocholesterolemic Properties as Evaluated in Hamsters

  • Chang, Y.K.;He, Martinez-Flores;Martinez-Bustos, F.;Sgarbieri, V.C.
    • Preventive Nutrition and Food Science
    • /
    • v.7 no.2
    • /
    • pp.133-138
    • /
    • 2002
  • To examine the cholesterol-towering effects of extruded products made with cassava starch (CS) and blends of cassava starch with either resistant starch (CS-RS) or oat fiber (CS-OF) hamsters were fed with diets containing a high-cholesterol (2%) and high-fat (17%) diet for 20 days. Hamsters fed with a diet containing no cholesterol were used as a control. Total cholesterol (TC) levels in the CS-RS and CS-OF groups were significantly (p>0.05) lower compared to the CS group by 11.5% and 8.5%, respectively. Also, the diets containing fibers decreased the value of low-density lipoproteins plus very low-density lipoproteins fraction by 32.4% (CS-RS diet) and 51.7% (CS-OF), respectively, as compared to the CS diet. Total lipid values were significantly (p<0.05) lower in hamsters fed the CS-RS diet (916 mg/dL) and CS-OF diet (964 mg/dL) as compared to those fed the CS diet (1661 mg/dL). The results obtained in this study suggest that extruded products containing cassava starch blended with either resistant starch or oat fleer, could prevent health problems associated with high levels of cholesterol and hypertriglyceridemia induced by a high cholesterol and fat diet.

Micromechanics-based Analysis on Tensile Behavior of the Sprayed FRP Composites with Chopped Glass Fibers (유리단섬유로 보강된 분사식 섬유보강 복합재료의 인장거동에 관한 미세역학 기반 해석)

  • Yang, Beom-Joo;Ha, Seong-Kook;Lee, Haeng-Ki
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.3
    • /
    • pp.211-217
    • /
    • 2012
  • In this paper, experimental tests and theoretical studies were carried out to evaluate the tensile behavior of the sprayed FRP composite with chopped glass fiber. For this, a series of tensile strength tests with various strain rates were conducted on the specimens of the matrix and sprayed FRP composite. Sprayed FRP composite contained chopped glass fibers with fiber length of 15mm and a specific volume fraction of fibers of 25 %. An inverse simulation was conducted to simulate the strain rate sensitivity based on the present experimental data of the epoxy resin. The simulated viscosity value is adapted to the micromechanics-based viscoelastic damage model(Yang et al., 2012), and the overall tensile behavior of sprayed FRP composites is predicted. It was seen from the comparative study between present experimental data and predication results that the proposed methodology can be used to predict the viscoelastic behavior of the sprayed FRP composite.

Elastic Analysis in Composite Including Multiple Elliptical Fibers (타원 섬유가 포함된 복합재료에서의 탄성 해석)

  • Lee, Jung-Ki
    • Composites Research
    • /
    • v.24 no.6
    • /
    • pp.37-48
    • /
    • 2011
  • A volume integral equation method (VIEM) is introduced for the solution of elastostatic problems in an unbounded isotropic elastic solids containing interacting multiple isotropic or anisotropic elliptical inclusions subject to remote uniaxial tension. The method is applied to two-dimensional problems involving long parallel elliptical cylindrical inclusions. A detailed analysis of stress field at the interface between the matrix and the central inclusion is carried out for square and hexagonal packing of the inclusions. Effects of the number of isotropic or anisotropic elliptical inclusions and various fiber volume fractions for the circular inclusion circumscribing its respective elliptical inclusion on the stress field at the interface between the matrix and the central inclusion are also investigated in detail. The accuracy and efficiency of the method are examined through comparison with results obtained from analytical and finite element methods. The method is shown to be very accurate and effective for investigating the local stresses in composites containing isotropic or anisotropic elliptical fibers.

Evaluation of SHCC on Direct Tensile Load using Acoustic Emission Technique (음향방출기법을 이용한 혼입되는 섬유의 종류에 따른 SHCC의 직접인장거동특성 평가)

  • Kim, Yun-Su;Yun, Hyun-Do;Jeon, Esther;Park, Wan-Shin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.177-180
    • /
    • 2008
  • SHCC shows the high energy tolerance capacity due to the interfacial bonding of the fibers to the cement matrix. For effective material design and application of SHCC, it is needed to investigate the damage process and micro-fracture mechanism of cement matrix reinforced with different types of fibers. The objective of this paper is to investigate the direct tensile response of cement composites reinforced with single and hybrid fibers using acoustic emission(AE) technique. In this study, the correlations between AE signal and result of the direct tensile response of SHCC. For these purposes, three kinds of fibers were used: PET1.5%, PET1.0+PE0.5%, PET1.0%+PVA0.5%. The result of the direct tensile response of SHCC, for the same volume fraction of fibers, ultimate strength of PET-PE specimen was 2.7 times higher than specimens with PET fibers. And from AE signal value, AE event numbers and cumulative energy were different according to kind of fiber because of the different material properties of reinforced fiber.

  • PDF

Volume Integral Equation Method for Problems Involving Multiple Diamond-Shaped Inclusions in an Infinite Solid under Uniaxial Tension (인장 하중을 받는 무한 고체에 포함된 다수의 다이아몬드 형 함유체 문제 해석을 위한 체적 적분방정식법)

  • Lee, Jung-Ki
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.1
    • /
    • pp.59-71
    • /
    • 2012
  • A volume integral equation method (VIEM) is introduced for the solution of elastostatic problems in unbounded isotropic elastic solids containing multiple interacting isotropic or anisotropic diamond-shaped inclusions subject to remote uniaxial tension. The method is applied to two-dimensional problems involving long parallel diamond-shaped cylindrical inclusions. A detailed analysis of the stress field at the interface between the matrix and the central inclusion is carried out for square and hexagonal packing of the inclusions. The effects of the number of isotropic or anisotropic diamond-shaped inclusions and of the various fiber volume fractions for the circular inclusions circumscribing its respective diamond-shaped inclusion on the stress field at the interface between the matrix and the central inclusion are also investigated in detail. The accuracy and efficiency of the method are examined through comparison with results obtained using the finite element method.

[ $\beta$ ]-Secretase (BACE1) Inhibitors from Sanguisorbae Radix

  • Lee, Hee-Ju;Seong, Yeon-Hee;Bae, Ki-Hwan;Kwon, Soon-Ho;Kwak, Hye-Min;Nho, Si-Kab;Kim, Kyung-A;Hur, Jong-Moon;Lee, Kyung-Bok;Kang, Young-Hwa;Song, Kyung-Sik
    • Archives of Pharmacal Research
    • /
    • v.28 no.7
    • /
    • pp.799-803
    • /
    • 2005
  • In the course of screening anti-dementia agents from natural products, two $\beta$-secretase (BACE1) inhibitors were isolated from the ethyl acetate soluble fraction of Sanguisorbae Radix by the activity-guided purification using silica gel, Sephadex LH-20, and RP-HPLC. They were identified as 1,2,3-trigalloyl-4,6-hexahydroxydiphenoyl-$\beta$-D-glucopyranoside (Tellimagrandin II, 1) and 1,2,3,4,6-pentagalloyl-$\beta$-D-glucopyranoside (2) and were shown to non-competitively inhibit $\beta$-secretase (BACE1) with the $IC_{50}$ values of $3.10{\times}10^{-6}M\;and\;3.76{\times}10^{-6}M$, respectively. The Ki values of 1 and 2 were $6.84{\times}10^{-6}M\;and\;5.13{\times}10^{-6}M$. They were less inhibitory to asecretase (TACE) and other serine proteases such as chymotrypsin, trypsin, and elastase, suggesting that they were relatively specific inhibitors of BACE1.

Modeling for the Prediction of Liquid Food Density (액체식품의 밀도예측을 위한 모델링)

  • Choi, Yong-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.133-139
    • /
    • 1988
  • For the development of a general mathermatical model to predict the density of liquid foods based on temperature and composition of each major component, the major components of liquid foods considered in this study were water, protein, fat, carbohydrate, fiber and ash. These samples were subdivided into sixteen pure components. The density of each sample was measured by a volumetric pycnometer at the temperature range of $0^{\circ}C\;to\;100^{\circ}C$ for three different solid content suspensions, The density values of pure component solids were calculated from the assumed model at given temperature, using the experimental values of three different solid content suspensions with known water fraction and density model of water. Using these calculated density data at the temperature range of $0^{\circ}C\;to\;100^{\circ}C$, the coefficients of ther density model for each pure component were determined by the OPT Subroutine Program. The density model developed in this study can be used to predict the density values of liquid foods at given temperature and composition.

  • PDF

Effects of PE (Polyethylene) and GF (Glass Fiber) Addition on Tensile Strength and Elongation of ABS (Acrylonitrile Butadiene Styrene) Recovered from Waste LCDs (폐(廢)LCD에서 회수(回收)된 ABS(Acrylonitrile Butadiene Styrene)의 인장강도(引張强度)와 연신율(延伸率)에 미치는 PE(Polyethylene)와 유리섬유(纖維)(Glass Fiber) 첨가효과(添加效果))

  • Lee, Sungkyu;Cho, Sung-Su;Lee, Soo-Young;Park, Jae Layng;Hong, Myung Hwan;Hong, Hyun Seon
    • Resources Recycling
    • /
    • v.22 no.3
    • /
    • pp.50-56
    • /
    • 2013
  • Recycled plastic composites of ABS/PE (50/50 and 20/80) and ABS/GF (90/10) were fabricated from plastic components of waste LCDs and effects of PE composition on elongation of ABS/PE composites were investigated. Increased PE contents improved elongation of the composite from 2.4% to 13%, which was attributed to increased crystalline behavior of the ABS/PE composite afforded by ductile PE fraction: SEM fractographs showed some sign of plastic deformation of PE matrix before ductile fracture of the composites.

Nondestructive Damage Sensitivity of Carbon Nanotube and Nanofiber/Epoxy Composites using Electro- Micromechanical Technique and Acoustic Emission (전기적-미세역학 시험법과 음향 방출을 이용한 탄소 나노튜브와 나노섬유 강화 에폭시 복합재료의 비파괴 손상 감지능)

  • 김대식;박종만;김태욱
    • Polymer(Korea)
    • /
    • v.28 no.4
    • /
    • pp.285-290
    • /
    • 2004
  • Nondestructive damage sensitivity of carbon nanotube(CNT) and nanofiber (CNF)/epoxy composites with their adding contents was investigated using electro-micromechanical technique. Carbon black (CB) was used only for the comparison with CNT and CNF. The fracture of carbon fiber was detected by acoustic emission (AE), which was correlated to the change in electrical resistance, ΔR under double-matrix composites (DMC) test. Stress sensing on carbon nanocomposites was performed by electro-pullout test under uniform cyclic loading. At the same volume fraction, the damage sensitivity for fiber fracture, matrix deformation and stress sensing were highest for CNT/epoxy composite, whereas for CB/epoxy composite they were the lowest among three carbon nanomaterials (CNMs). Damage sensitivity was correlated with morphological observation of carbon nanocomposites. Homogeneous dispersion among CNMs could be keying parameters for better damage monitoring. In this study, damage sensing of carbon nanocomposites could be evaluated well nondestructively by the electrical resistance measurement with AE.

Buckling analysis of nano composite sandwich Euler-Bernoulli beam considering porosity distribution on elastic foundation using DQM

  • Nejadi, Mohammad Mehdi;Mohammadimehr, Mehdi
    • Advances in nano research
    • /
    • v.8 no.1
    • /
    • pp.59-68
    • /
    • 2020
  • In the present study, buckling analysis of sandwich composite (carbon nanotube reinforced composite and fiber reinforced composite) Euler-Bernoulli beam in two configurations (core and layers material), three laminates (combination of different angles) and two models (relative thickness of core according to peripheral layers) using differential quadrature method (DQM) is studied. Also, the effects of porosity coefficient and different types of porosity distribution on critical buckling load are discussed. Using sandwich beam, it shows a considerable enhancement in the critical buckling load when compared to ordinary composite. Actually, resistance against buckling in sandwich beam is between two to four times more. It is also showed the critical buckling loads of laminate 1 and 3 are significantly larger than the results of laminate 2. When Configuration 2 is used, the critical buckling load rises about 3 percent in laminate 1 and 3 compared to the results of configuration 1. The amount of enhancement for laminate 3 is about 17 percent. It is also demonstrated that the influence of the core height (thickness) in the case of lower carbon volume fractions is ignorable. Even though, when volume fraction of fiber increases, differences grow smoothly. It should be noticed the amount of decline has inverse relationship with the beam aspect ratio. Among three porosity patterns investigated, beam with the distribution of porosity Type 2 (downward parabolic) has the maximum critical buckling load. At the end, the first three modes of buckling will be demonstrated to investigate the effect of spring constants.