• Title/Summary/Keyword: fiber and paper properties

Search Result 978, Processing Time 0.023 seconds

Effect of Beating and Water Impregnation on Fiber Swelling and Paper Properties (고해와 수침시간이 섬유의 팽윤과 종이 물성에 미치는 영향)

  • Choi, Eun-Yeon;Cho, Byoung-Uk
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.6
    • /
    • pp.88-95
    • /
    • 2013
  • Effects of beating and water immersion time on fiber swelling and paper properties were elucidated for the fundamental study of producing high bulk paper. Chemical pulps were beaten for various freeness and the beaten pulp was immersed in water up to 24 hours. Fiber swelling was evaluated by measuring water retention value (WRV). It was found that fiber swelling, bulk and paper strength were quickly changed at the initial stage of beating. Immersion in water did not significantly increase WRV, paper density and strength, implying that soaking in water alone could not effectively swell fiber wall. In order to swell further, hydrogen bonds between fibrils in fiber wall and hence fiber wall structure shall be broken by mechanical force during beating.

Characterization of Watermarked Hanji prepared with Non-Mulberry Mixed Fibers (대체보조섬유를 이용한 Watermark 삽입 한지의 제조)

  • Cho, Jung-Hye;Kim, Kang-Jae;Park, Seong-Bae;Kim, Chul-Hwan;Eom, Tae-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.41 no.3
    • /
    • pp.35-41
    • /
    • 2009
  • The new way of utilization of Hanji need to develop for adding high value added. An watermarked Hanji was prepared with non-mulberry mixed fibers and the properties were investigated. The mechanical properties of non-mulberry fiber mixed Hanji were very similar to mulberry fiber Hanji. The non-mulberry fiber mixed Hanji was a little brighter than original Hanji. The air permeability and pore size of the hot pepper fiber mixed Hanji were decreased depending on the content of hot pepper fiber. The printing ability of watermarked Hanji made of non-mulberry mixed fibers was higher than that of original paper mulberry Hanji. The preservation properties of non-mulberry fiber mixed watermarked Hanji were almost same as those of the original Hanji.

Effect of Mechanical Impact Treatment on Fiber Morphology and Handsheet Properties

  • Yung B. Seo;Kim, Dukki;Lee, Jong-Hoon;Yang Jeon
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2001.11a
    • /
    • pp.183-199
    • /
    • 2001
  • Alternative way of shaping fibers suitable for papermaking was introduced. Impact refining, which was done simply by hitting wet fibers with a metal weight vertically, was intended to keep the fibers from shortening and to cause mostly internal fibrillation. Virgin chemical pulp, its recycled one and OCC were used in the experiment. It was noticed from the experiment that impact refining on virgin chemical pulp kept the fiber length and Increased bonding properties greatly, However, in the recycled fibers from the chemical pulp, fiber length and bonding properties were decreased. In OCC, which seems to contain fractions of semi-chemical pulp and mechanical pulp (GP), and which is recycled pulp from corrugated boxes, fiber length and bonding properties were decreased disastrously. We believe recycled cellulosic fibers (recycled chemical pulp and OCC in this case), which went through hornification, were less resistant to the mechanical impact than virgin chemical pulp. For virgin chemical pulp, impact refining allowed no significant fiber length shortening, high WRV, and high mechanical strength.

  • PDF

Mechanical Properties of Steel Fiber Reinforced Polymer Concrete (강섬유 보강 폴리머 콘크리트의 역학적 특성)

  • 김기락;연규석;이윤수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.336-341
    • /
    • 1998
  • Steel fiber reinforced concrete(SFRC) is a composite material possessing many physical and mechanical properties which are distinct from unreinforced concrete. The use of steel fiber reinforcement to improve the flexural and tensile strengths, extensibility and toughness of ordinary cement concrete is well known at present, but reinforcement of polymer concrete with steel fibers has been hardly reported untill now. The objective of this study was to improve the properties of the polymer concrete by addition of steel fibers. In this paper steel fiber reinforced polymer concrete is prepared with various steel fiber contents and aspect ratio($\ell$ /d), and their mechanical properties were investigated experimentally.

  • PDF

Effect of separate and mixed refining of hardwood and softwood pulps on paper properties

  • Chauhan, Vipul S.;Kumar, Nitin;Kumar, Manoj;Chakrabarti, Swapan K.;Thapar, S.K.
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.4
    • /
    • pp.1-10
    • /
    • 2011
  • Beating or refining is an energy intensive process in paper industry. In India, most of the paper industries blend long fibered softwood pulps with short fibered hardwood or agro based pulps to get the paper properties of competitive level. Refining characteristics of the blend of pulps is very crucial with respect to freeness and strength properties. This study has been carried out to understand the refining behavior of three hardwood pulps and a softwood pulp. The hardwood and softwood pulps are blended in different proportions in two different ways; a) blending after their separate refining, and b) blending before refining followed by mixed refining of the blended pulps. Freeness of pulp, strength, optical and surface properties of paper along with formation have been determined and compared for both the refining methods. The fiber classification of refined pulps was also carried out to analyze the effect of refining method on fiber morphology. The mixed refining of hardwood and softwood pulps marginally affects the fiber morphology in comparison to separate refining of pulps. The strength and other properties of paper prepared from mixed refining of pulps are either better or comparable than those of separately refined pulps.

Fiber Surface Engineering to Improve Papermaking Raw Material Quality

  • Wang Eugene I-Chen;Perng Yuan Shing
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06b
    • /
    • pp.271-278
    • /
    • 2006
  • We used polymers of alternating cationic and anionic nature to build up shells on fiber surfaces, strengthen the worn-out fibers and improve paper properties made from such fibers. OCC and ONP pulps were either dipped or salted out in the cationic polyallylamine, polyacrylamide and starch solutions. After centrifugal drying, these were followed by treatments in anionic polyacrylic acid, poly-acrylamide, and starch solutions, respectively. The shell-enhanced fibers were formed into handsheets and their physical properties evaluated. The results show that building multiple shells on worn-out fiber surfaces can strengthen the fibers and paper. The simpler and more practical impregnation-centrifuging treatment provided the desired effects, whereas salting out the polymers produced somewhat superior fibers. The latter process, were impractical, however. The first pair of polymeric shells imparted marked strength improvement, whereas later layers had diminishing efficacies. Overall, the methods can improve fiber quality, attaining paper strength requirements without resorting to expensive measures. Alternate cationic polymer and filler powders were also deposited on fiber surface based on the micriparticle system in an anticipation of stiffness gains. Platy minerals, such as montmorillonite, bentonite, sericite, clay and talc were added following cationic PAM. After dewatering of polymer-pigment shelled fiber of one to 3 pairs of layers, handsheets either calendered or uncalendered were evaluated. The results indicate that regardless of calendaring, stiffness of the handsheets did not improve appreciably while certain other strength properties showed gains. We also attempted the novel starch gel filler addition method wherein tapioca starch and filers (PCC, sericite or clay) were mixed at high solids content of 50% and cooked until gelatinized. The filled handsheets were dried under various conditions and then tested for their properties. Improvements in strengths of modified filled paper were observed.

  • PDF

Application of Confocal Laser Scanning Microscopy and Fiber Distribution Index to Study Kenaf Handsheet Properties

  • Pang, Myong-Hyeok;Park, Jong-Moon;Cho, Nam-Seok
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.3
    • /
    • pp.54-59
    • /
    • 1999
  • This study was to quantify fiber distributions in thickness direction of kenaf handsheets as a fiber distribution index (FDI) and to analyze the relationship between FDI and the handsheet properties. The images of fiber distribution in z-direction were obtained by Confocal Laser Scanning Microscope (CLSM) and analyzed by image analysis technique. The proposed FDI had a good correlation with high R2 vlaues with various properties of paper, such as apparent density, scattering coefficient , burst index, tear index, tensile index, and folding endurance. The proposed FDI was shown as a good index to quantify paper properties.

  • PDF

Permanent Characteristics of the Handsheet Mixed with Hemp Bast Fiber (삼 인피섬유 혼합율이 종이의 보존 특성에 미치는 영향)

  • Kim, Jun-Kyu;Choi, Kyoung-Hwa;Lee, Myoung-Ku
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.6
    • /
    • pp.71-77
    • /
    • 2014
  • Despite the ubiquity of electronic media, paper is still the most generally readable carrier of information. Because paper materials are deteriorated by chemical, biological and physical factors over time, there have been major concerns about the decay of large collections of books, publications, old maps, historical artifacts, and written records. Therefore, manufacture of permanent paper has been a highly debated issue in paper conservation research. Through the use of permanent paper, our new records, journals, library books, art works, and all culturally and historically important documents can be preserved. In this study, handsheets were made of mixture of hemp bast fiber produced by soda pulping and HwBKP varying the amount of hemp. Physical, mechanical and optical properties of each handsheet were examined. As the ratio of hemp bast fiber increased, mechanical properties were improved significantly, but opacity decreased. After aging, the optical properties of the handsheets mixed with the hemp bast fiber more decreased than those of the non-mixed handsheet. The more mixture ratio of hemp bast fiber increased, the more decreasing rate of optical properties increased. As a result, it was confirmed that hemp bast fiber is a very promising resource for the manufacturing of permanent paper.

The Effects PPF Fiber on Concrete Properties (PPF 섬유가 콘크리트의 물성에 미치는 영향)

  • 한만엽
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.150-155
    • /
    • 1993
  • The use of polypropylene fibers in concrete has been widely advertised by the fiber manufacturers. However, the behavior of concrete containing plastic fibers has not been fully understood. The effects of fiber on concrete have been forcused on shrinkage crack control mainly from field observation, and the mechanism and the side effect of fiber such as workability reduction have been neglicted. In this paper, the effect of fiber on workability and shrinkage properties have been studied. The addition of fiber significantly reduce workability and requires additional water to maintain the workability, which causes adversal effects on concrete properties.

  • PDF

Combustion and Mechanical Properties of Fire Retardant Treated Waste Paper-Waste Acrylic Raw Fiber Composite Board

  • Eom, Young Geun;Yang, Han-Seung;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.1-10
    • /
    • 2003
  • Shredded waste newspapers, waste acrylic raw fibers, and urea-formaldehyde (UF) adhesives, at 10% by weight on raw material, were used to produce recycled waste paper-waste acrylic raw fiber composite boards in laboratory scale experiments. The physical and mechanical properties of fire retardant treated recycled waste paper-waste acrylic raw fiber composite boards were examined to investigate the possibility of using the composites as internal finishing materials with specific gravities of 0.8 and 1.0, containing 5, 10, 20, and 30(wt.%) of waste acrylic raw fiber and 10, 15, 20, and 25(wt.%) of fire retardant (inorganic chemical, FR-7®) using the fabricating method used by commercial fiberboard manufacturers. The bending modulus of rupture increased as board density increased, decreased as waste acrylic raw fiber content increased, and also decreased as the fire retardant content increased. Mechanical properties were a little inferior to medium density fiberboard (MDF) or hardboard (HB), but significantly superior to gypsum board (GB) and insulation board (IB). The incombustibility of the fire retardant treated composite board increased on increasing the fire retardant content. The study shows that there is a possibility that composites made of recycled waste paper and waste acrylic raw fiber can be use as fire retardant internal finishing materials.