• Title/Summary/Keyword: fiber Bragg grating (FBG) sensors

Search Result 172, Processing Time 0.023 seconds

Mechanical strength of FBG sensor exposed to cyclic thermal load for structural health monitoring

  • Kim, Heonyoung;Kang, Donghoon;Kim, Dae-Hyun
    • Smart Structures and Systems
    • /
    • v.19 no.3
    • /
    • pp.335-340
    • /
    • 2017
  • Fiber Bragg grating (FBG) sensors are applied to structural health monitoring (SHM) in many areas due to their unique advantages such as ease of multiplexing and capability of absolute measurement. However, they are exposed to cyclic thermal load, generally in the temperature range of $-20^{\circ}C$ to $60^{\circ}C$, in railways during a long-term SHM and the cyclic thermal load can affect the mechanical strength of FBGs. In this paper, the effects of both cyclic thermal load and the reflectivity of FBGs on the mechanical strength are investigated though tension tests of FBG specimens after they are aged in a thermal chamber with temperature changes in a range from $-20^{\circ}C$ to $60^{\circ}C$ for 300 cycles. Results from tension tests reveal that the mechanical strength of FBGs decreases about 8% as the thermal cycle increases to 100 cycles; the mechanical strength then remains steady until 300 cycles. Otherwise, the mechanical strength of FBGs with reflectivity of 6dB (70%) and 10dB (90%) exhibits degradation values of about 6% and 12%, respectively, compared to that with reflectivity of 3dB (50%) at 300 cycles. SEM photos of the Bragg grating parts also show defects that cause their strength degradation. Consequently, it should be considered that mechanical strength of FBGs can be degraded by both thermal cycles and the reflectivity if the FBGs are exposed to repetitive thermal load during a long-term SHM.

Development of Load Cell Using Fiber Brags Grating Sensors and Differential Method for Structural Health Monitoring (구조 건전성 모니터링을 위한 광섬유 브래그 격자 센서와 차동법을 적용한 로드셀 개발)

  • Kim, Dae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.4
    • /
    • pp.299-307
    • /
    • 2009
  • Emerging fiber optic sensor technologies have shown great potential to overcome the difficulties associated with conventional sensors. Fiber optic sensors are immune to EM noise and electric shock and thus can be used in explosion-prone areas. Several kinds of fiber optic sensors have been developed over the last two decades to take advantage of these merits. There have also been many field applications of fiber optic sensors for structural health monitoring as NDT/HDE. However, very few sensors, particularly a load cell have been successfully commercialized. This Paper Presents a load cell using fiber Bra99 gra1ing (FBG) sensors. The shape of the load cell is a link type, and three FBG sensors are used for measuring strains at three different points. Especially, these strains are processed with a differential method in order to exclude common mode noise such as temperature. Moreover, the sensitivity, the linearity and the resolution of the load cell were successfully verified from the experiment of tension test.

High Precision Measurement for String Resonator used in FBG Strain Sensors (광섬유 브래그 격자 변형률 센서용 현공진기의 고정밀 측정)

  • 이영균;송인천;정성호;이병하;이선규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.135-139
    • /
    • 2001
  • This paper describes a string resonator that is used for the interrogation system of a Fiber Bragg Grating(FBG) strain sensor. The strain on the fiber piece is calculated from the measured frequency based on that the natural frequency of a string is a function of the applied absolute strain. Existing research considered a fiber as a string, but a fiber is not a string in the strict sense due to its bending stiffness, thus the fiber should be modeled as a beam accompanied with an axial force. In the vibration modeling, the relationship between the strain and the natural frequency is derived, and then the resonance condition is described in terms of both the phase and the mode shape for sustaining resonant motion. Several experiments verify the effectiveness of the proposed model of the fiber. The performance of the string resonator is analyzed by measuring the frequency change according to the applied strains in the dynamic range of 1100$\mu\varepsilon$ referred to the displacement from capacitance sensor. From the experimental results, the implemented string resonator provides the accuracy of $\pm$3$\mu\varepsilon$, the quasi-static resolution of ~0.1$\mu\varepsilon$(rms) which amount to be $\pm$0.17$\mu\textrm{m}$ and ~6nm respectively, in case of fiber length of 56mm. For a dynamic strain, it can provide the accuracy of ~3$\mu\varepsilon$ until the frequency comes to 8Hz. As a consequence, the string resonator proposed for FBG sensor provides the high accuracy and the high resolution in strain measurement, and also it is expecting to be used, for the application, to not only strain but also displacement measuring device.

  • PDF

Radiation Effects on Fiber Bragg Grating Sensors by Irradiation Conditions of UV Laser (UV 레이저 노출조건에 따른 FBG 센서의 방사선 영향)

  • Kim, Jong-Yeol;Lee, Nam-Ho;Jung, Hyun-Kyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.12
    • /
    • pp.2310-2316
    • /
    • 2016
  • We studied the effect of $Co^{60}$ gamma-radiation on the fiber Bragg gratings (FBGs) by irradiation time of UV Krypton fluoride (KrF) excimer laser among grating processing parameters. The FBGs were fabricated in a different UV laser irradiation time at 30, 60, 90, and 120 seconds using the same commercial Ge-doped silica core fiber (SMF-28e). It was exposed to gamma-radiation up to a high dose of 34.3 kGy at the dose rate of 106 Gy/min, and then it was analyzed radiation effects by measuring the radiation-induced change in the temperature sensitivity coefficient and Bragg wavelength shift. According to the experimental results, We confirmed that the UV laser irradiation period for grating inscription has a highly effect on the radiation sensitivity of the FBGs. The radiation-induced Bragg wavelength shift by the change of laser irradiation conditions showed a difference more than about 50 %.

Measurement of Material Properties of Composites under High Temperature using Fiber Bragg Grating Sensors (광섬유 브래그 격자 센서를 이용한 고온용 복합재료의 물성 측정)

  • 강동훈;박상욱;김수현;홍창선;김천곤
    • Composites Research
    • /
    • v.16 no.6
    • /
    • pp.41-47
    • /
    • 2003
  • Composites are widely used for aircraft, satellite and other structures due to its good mechanical and thermal characteristics such as low coefficient of thermal expansion(CTE), heat-resistance, high specific stiffness and specific strength. In order to use composites under condition of high temperature, however, material properties of composites at high temperatures must be measured and verified. In this paper, material properties of T700/Epoxy were measured through tension tests of composite specimens with an embedded FBG sensor in the thermal chamber at the temperatures of RT, $100^{\circ}$, $200^{\circ}$, $300^{\circ}$, $300^{\circ}$. Through the pre-test of an embedded optical fiber, we confirmed the embedding effects of an optical fiber on material properties of the composites. Two kinds of specimens of which stacking sequences are [0/{0}/0]$_{T}$. and [$90_2$/{0}/$90_2$]. were fabricated. From the experimental results, material property changes of composites were successfully shown according to temperatures and we confirmed that fiber Bragg grating sensor is very appropriate to strain measurement of composites under high temperature.

Health Mornitoring of Spatial Structure by Optical FBG Sensor (광섬유센서를 이용한 대공간 구조물의 상시 모니터링)

  • Lee, Chang-Woo;Lee, Seung-Jae;Ju, Gi-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.3 s.25
    • /
    • pp.49-55
    • /
    • 2007
  • In this paper, always monitoring system of fiber Bragg Crating(FBG)Sensor is described and FBGs are well suited for measuring the movement in the part of the spatial structure(for example, cable, membrane and so on)under the pressure conditions. In order to measure the movement of long span structure, we need the measurable equipment that takes in many spots to measure. In the result of experiment, the fiber sensors showed good response to the pressure conditions. Therefore, We could calculate the movement of spatial structure and be possible health monitoring of the spatial structure.

  • PDF

Measurement of CTE Change in a Composite Laminate with Aging under Space Environment using Fiber Optic Sensors (광섬유센서를 이용한 우주환경하에서 복합재료 적층시편의 노화에 따른 열팽창계수변화 측정)

  • Gang,Sang-Guk;Gang,Dong-Hun;Kim,Cheon-Gon;Hong,Chang-Seon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.10
    • /
    • pp.21-26
    • /
    • 2003
  • In this research, the change of coefficient of thermal expansion (CTE) of graphite/epoxy composite laminate under space environment was measured using fiber optic sensors. Two fiber Bragg grating (FBG) sensors have been adopted for the simultaneous measurement of thermal strain and temperature. Low Earth Orbit (LEO) conditions with high vacuum, ultraviolet and thermal cycling environments were simulated in a thermal vacuum chamber. As a pre-test, a FBG temperature sensor was calibrated and a FBG strain sensor was verified through the comparison with the electric strain gauge (ESG) attached on an aluminun specimen at high and low temperature respectively. The change of the CTE in a composite laminate exposed to space environment was measured for intervals of aging cycles in real time. As a whole, there was no abrupt change of the CTE after 1000 aging cycles. After aging, however, the CTE decreased a Little all over the test temperature range. These changes are caused by outgassing, moisture desorption, matrix cracking etc.

Simultaneous Measurement of Strain and Temperature During and After Cure of Unsymmetric Composite Laminate Using Fiber Optic Sensors (비대칭 복합적층판의 성형시 및 성형후 광섬유 센서를 이용한 변형률 및 온도의 동시 측정)

  • 강동훈;강현규;김대현;방형준;홍창선;김천곤
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.244-249
    • /
    • 2001
  • In this paper, we present the simultaneous measurement of the fabricaition strain and temperature during and after cure of unsymmetric composite laminate uising fiber optic sensors. Fiber Bragg grating/extrinsic Fabry-Perot interferometric (FBG/EFPl) hybrid sensors are used to measure those measurands. The characteristic matrix of sensor is analytically derived and measurements can be done without sensor calibration. A wavelength-swept fiber laser is utilized as a light source. FBG/EFPI sensors are embedded in a graphite/epoxy unsymmetric cross-ply composite laminate at different direction and different location. We perform the real time measurement of fabrication strains and temperatures at two points of the composite laminate during cure process in an autoclave. Also, the thermal strains and temperatures of the fabricated laminate are measured in thermal chamber. Through these experiments, we can provide a basis for the efficient smart processing of composite and know the thermal behavior of unsymmetric cross-ply composite laminate.

  • PDF

Fiber Sensor Network for Vessel Monitoring based on Code Division Multiple Access (코드분할 다중방식을 기반으로 하는 선박 상태 모니터링 광섬유 센서 네트워크)

  • Kim, Young-Bok;Lee, Seong-Ro;Jeon, Sie-Wook;Park, Chang-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.10B
    • /
    • pp.1216-1221
    • /
    • 2011
  • We propose a multiplexed fiber Bragg grating (FBG) sensor network for vessel monitoring to measure the variation of strain and temperature by environmental perturbation based on code division multiple access (CDMA). The center wavelength of FBG was linearly changed by environmental perturbation such as strain and temperature variation so that we could be monitoring the state of sensors. A RSOA was used as optical broadband source and which was modulated by using pseudo random binary sequence (PRBS) signal. The correlation peak of reflected signal from sensor networks was measured. In this paper, we used the sliding correlation techniques for high speed response and dynamic rage of sensors.

A study on the low-frequency of acoustic sensor using single mode FBG (Fiber Bragg Grating). (단일모드 광섬유 브래그 격자를 이용한 저주파수 대역의 음향 센서에 관한 연구)

  • Kim, Kyung-Bok;Kwack, Kae-Dal
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.396-403
    • /
    • 2000
  • The low- frequency acoustic sensor using the recently developed FBG has an excellent merits which the existing fiber-optic sensor has and also it has an excellent signal sensing effect in the environment of low-frequency($30Hz{\sim}300Hz$). Furthermore, we can expect the utilization of low-frequency signal defection instead of existing microphones in the environment of electric noise and also it can be developed as the high-sensibility multiplexing through the sensor array system.

  • PDF