• 제목/요약/키워드: fertilization times

Search Result 382, Processing Time 0.02 seconds

Studies on the Method of Ground Vegetation Establishment of Denuded Forest Land in the Mudstone Region - The Characteristics of Mudstone and Speeded-up Reforestation - (니암지대황폐림지(泥岩地帶荒廢林地)의 지피식생(地被植生) 조성방법(造成方法)에 관(關)한 연구(硏究) - 니암특성((泥岩特性)과 조기녹화(早期綠化) -)

  • Chung, In Koo
    • Journal of Korean Society of Forest Science
    • /
    • v.19 no.1
    • /
    • pp.1-23
    • /
    • 1973
  • The results of ground vegetation experiment conducted at completely denuded forestland in the mudstone region are summerized as follows: On the reaults of soiling quantity the effect of soiling was observed where depth of soiling over 10 cm was practiced, and a plot where treated with 15cm soiling and without fertilizer showed poor growth and it was even worser than the plot where soiling was practiced only 1 cm in thikness but applied adequate amount of fertilizers. The depth of slits between 30cm and 40cm showed no significant difference in the effect. A plot where covered with vegetation bag showed somewhat better results in seed loss and early growth but no differences observed in the fall result over the none covered plot. And then, it is recommendable to have soiling over 10cm in thikness with slit of 30cm and 30cm in depth and to apply 30 gram of fertilizer (22;22:11, 50 gram) per slit. On various soiling materials trial there were no striking differences in the effect of soiling between weathered granite soil, wheathered tuffs soil and weathered mudstone soil. In the treatment with various green materials, a plot treated with straw mat showed a significant difference at 1 percent. The results show that weathered mudstone soil is effective to use as soiling materials and straw mat treatment was better. On forest fertilization trial, in the mudstone region where red and black pine trees already existing at a rate of 2,000-3,000 trees per hectare had applied 110kg of compound fertilizers (9:12:3 and 22:22:11) per hectare basis in terms of plant nutrient. As a result, the difference in effect between the compound fertilizers was not found however the leaf color and leaf length of the fertilizer added plot showed darker and longer at 30 percent over the no fertilizer received plot. Compound fertilizers, 14:37:12 and 9:12:3 were applied to alder trees at a rate of 20 gram and 40 gram per tree in terms of plant nutrient and a remarkable growth accelerantion was observed where 40 grams of plant nutrient applied. The effect difference between the compound fertilizers was not found. On investigation of tree root elongation, forty years old red pine trees showed only 15cm tap root elongation through mudstone while black pine had 23 cm tap root elongation. The total length of supporting root elongtion of red and black pines showed 20 and 13 meters, respectively. The tap roots of Black locusts were not able to elongate through mudstone, however, the supporting roots tended to develop to the underneath of pine tree where some moisture content is available. Black locusts And grown on the residual soil of mudstone normally die between 8 to 10 years. The red pine trees show flat in tree shape while black pine had triangle in the shape. With the results it can be said that in an artificial reforestation in denuded forest land of the mudstone region the adequate slit and enough amount of fertiliizer application must be provided for the succesful performance of the program. On integrated experimental results of 1972. for the establishment of ground vegetation on the completely denuded forest land in mudstone region, soiling could be effectively practiced with weathered mudstone soil and it would not specially necessiate to have either weathered granite or tuffssoil for the soiling. And the soiling depth should be more than 10 cm in thickness. Among green materials used the straw mat proved to be the most effective reatment. Three major factors which enable to establish ground vegetation by the shortest period of time: A. Physical improvement of soil is necessary to breakdown of the horizontal cracks sushas Slit, contour line plot, seeding hole and etc., and soiling with weathered mudstone soil. B. Chemical improvement of soil: is needed sufficient amount of fertilizer application 300~400kg ha, $N+P_2O_5+K_2O$), and increased production of ground covering and expedite resolution of the vegetation (ground vegetation, fallen leaves and twigs). C. Complete establishment of the basic structure for the erosion control (Prevention of surface soil erosion)

  • PDF

Studies on the Productivity of Individual Leaf Blade of Paddy Rice (수도의엽신별 생육효과에 관한 연구)

  • Dong-Sam Cho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.18
    • /
    • pp.1-27
    • /
    • 1975
  • Experiment I: A field experiment was conducted in an attempt to find the effect of top-dressing at heading time in different levels of nitrogen application and of different positioned leaf blades formed by the treatment of leaf defoliation at heading time on the ripening and the yield of rice. The results obtained are as follows: 1. Average number of ears per hill and average number of grains per ear in different levels of nitrogen application were increased as the amount of nitrogen applied was increased. while the rate of ripened grains the yield of rough rice and the weight of 1, 000 kernels of brown rice were decreased respectively as the amount of nitrogen applied was increased. 2. The rate of ripened grains and the weight of 1.000 kernels of brown rice in different levels of nitrogen, top-dressing at heading time were larger than those in control and increased. The yield of rough rice although statistically significant differences were not recognized, were numerically increased. 3. The rate of ripened grains, the yield of rough rice, the weight of 1, 000 kernels of brown rice and the rate of hulling in different treatments of leaf defoliation were remarkably decreased as the degree of leaf-defoliation became larger. 4. The rate of ripened grains, the yield of rough rice, the weight of 1, 000 kernels of brown rice and the rate of hulling in different combinations of number of remained leaves positioned differently, formed the order of $L_1(flag leaf)>L_2>L_3>L_4$ when only one leaf blade was remained, and were increased as the positions of leaves were higher when two leaf blades. were, remained. 5. In case of decrease in the number of leaf blades positioned differently, by the treatment of leaf. defoliation, rate of ripened grains, the yield of rough rice, the weight of 1, 000 kernels of brown rice and the rate of hulling were increased as the area of remained leaves became larger and the nitrogen content of a leaf blade was increased. 6. There was a tendency that the increase in the amount of fertilizer application made the rate of ripened grains and the weight of 1, 000 kernels of brown rice reduced in any number of remained leaf blades, but the application of top-dressing at heading. time resulted in the reverse tendency. The yield of rough rice showed a tendency to be increased as the amount of basal dressing and top-dressing increased and for the application of top-dressing at heading time, the yield of rough rice was less at the smaller number of those. 7. The productivity effect of the rate of ripened grains and the yield of brown rice covered by leaf blades was more than 50 per cent and that of the. weight of 1, 000 kernels of brown rice was not more than 1.0 percent. As the amount of nitrogen application increased the. effect of leaf blades on the rate of ripened. grains and the weight of 1, 000 kernels of brown rice was increased. The effect of leaf blades on the weight of brown rice was increased as the amount of basal dressing-application, but the effect was decreased as the amount of top-dressing at heading time increased, 8. The productivity effects of different positioned leaf blades on the rate of ripened grains, the yield of rough rice and the weight of 1, 000 kernels of brown rice were in order of $L_1(flag leaf)>L_2>L_3>L_4$ the productivity effects of $L_1$ and $L_2$ had a tendency to be increased as the amount of nitrogen applied was increased. Experiment II: A field experiment was done in order to disclose the effect of the time of nitrogen application on yield component and the effect of different positioned leaves formed by leaf defoliation at heading time on the rate of ripened grains and the yield of rice. The results obtained are as follows: 1. Average number of ears per hill was increased in the treatment of nitrogen application from basal dressing to 22 days before heading and in the treatment of application distributed weekly. Number of grains was increased in the treatment of nitrogen application from 36 days to 15 days before heading. The rate of ripened grains was, lower in the treatment of nitrogen application from top-dressing to 15 days before heading than in that of non-application, was higher in the treatment of nitrogen application within 8 days before heading, and was the lowest in that of application 29 days before heading. The yield of rough rice was the highest in the treatment of nitrogen application from 29 days to 22 days before heading. The weight of 1, 000 kernels of brown rice was a little high in the treatment of application from 29 days to 8 days before heading. 2. The rate of ripened grains the yield of rough rice, the weight of 1, 000 kernels of brown rice and the rate of hulling in different treatments of leaf defoliation were remarkably decreased as the degree of leaf defoliation got larger and there were highly significant differences among treatments. There was also a recognized interaction between the time of nitrogen application and leaf defoliation. 3. In relation to the rate of ripened grains, the weight of 1. 000 kernels of brown rice and the rate of hulling in different numbers of remained leaves positioned differently and their combinations, the yield components were in order of $L_1(flag leaf)>L_2>L_3>L_4$ when only one leaf was remained, which indicated that the components were increased as the leaf position got higher. When two laves were remained, the rate of ripened grains, the yield of rough rice and rate of hulling were high in case of the combinations of upper positioned leaves, and the increase in the weight of 1, 000 kernels of brown rice appeared to be affected most]y by flag leaf. When three leaf blades were remained similarly the components were increased with the combination of upper positioned leaf blades. 4. In case of decreased different positioned leaf blades by treatment of leaf defoliation, there was a significant positive regression between the leaf area, the dry matter weight of leaf blades and the nitrogen contents of leaf blades, and rate of ripened grains and the yield of rough rice, but there was no constant tendency between the former components and the weight of 1. 000 kernels of brown rice. 5. The closer the time of fertilizer application to heading time, the more the rate of ripened grains and the weight of 1, 000 kernels was decreased by defoliation, and the less were the remained leaf blades, the more remarkable was the tendency. The rate of ripened grains and the weight of 1. 000 kernels was increased by the top-dressing after heading time as the number of remained leaf blades. When the number of remained leaf blades was small the yield of rough rice was increased as the time of fertilizer application was closer to heading time. 6. Discussing the productivity effects of different organs in different times of nitrogen application, the productivity effect of a leaf blade on the rate of ripened grains was higher as the time of nitrogen application got later, and in the treatment of non-fertilization the productivity effect of a leaf blade and that of culm were the same. In the productivity effect on the yield of brown rice, the effect of culm covered more than 50 percent independently on the time of nitrogen application, and the tendency was larger in the treatment of non-fertilizer. The productivity effect of culm on the weight of 1. 000 kernels of brown rice was more than 90 percent, and the productivity effect of a leaf blade was increased as the time of application got later. 7. The productivity effect of a leaf blade in different positions on the rate of ripened grains, the yield of rough rice and the weight of 1, 000 kernels of brown rice had a tendency to be increased as the time of application got later and as the position of leaf blades got higher. In the treatment of weekly application through the entire growing period, the rate of ripened grains and the yield of rough rice were affected by flag leaf and the second leaf at the same level, the but the weight of 1, 000 kernels of brown rice was affected by flag leaf with more than 60 percent of the yield of total leaves.

  • PDF