• Title/Summary/Keyword: fertilization times

Search Result 385, Processing Time 0.032 seconds

Methods of Application and Beneficial Effects of Silicate-Coating Rice Seeds (볍씨의 규산코팅방법에 따른 이용특성과 육묘효과)

  • Kang, Yang-Soon;Kim, Wan Joong;Hwang, Duck Sang;Kim, Hee Kyu
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.1
    • /
    • pp.30-39
    • /
    • 2020
  • A new silicate coating technology was developed which reduces the impact of dust and loosening during seeding compared to existing silicate-coatings (Seed/Si/Zeolite), and therefore can lower the production costs of rice cultivation. In this method, 100 g of rice seed is coated with 18 mL of liquid silicic acid and then dressed with a mixture containing 80 g of dolomite and 5 g of iron. To determine the most effective method of application and ensure that seedlings developed healthily, a series of experiments were carried out. Infected seeds scattered in seedling boxes and pots (soil and hydroponic) were coated dry, without disinfection. In comparison to the seed which were not treated with the silicate-coating, the new seed (A) were 1.84 times heavier in weight, and were also improved in terms of coating strength and coating color. Compared to the seedlings grown from the non-coated seed, those grown from the new silicate-coated seed were of significantly higher quality (weight/length) and had erect, dark greenish leaves, which are ideal plant characteristics. This was most likely due to increased silicate uptake. The symptoms of bakanae disease in the non-coated seed peaked after 38 days to 54.2%, whereas the control value was 68.8% in the new silicate-coated seed (A). In the infected seedlings grown from the new silicate-coated rice seed, subnormal macro-conidia, namely, a sickle shape spore without a septum; a straight oblong shape spore without a septum and with a thick cell wall; and inter-septal necrosis of a normal spore were detected. It is believed that the strong alkalinity of silicic acid have acted as unfavorable conditions for pathogenicity. In seedlings grown from the new silicate coated rice seed under hydroponic conditions without nutrients, normal root activity and growth was maintained without leaf senescence. Therefore, it was possible to reduce the rate of fertilization. In the future, a new silicate-coated rice seed was required for the study of minimal nutrition for anti-aging of seedlings.

Development of Optimal Seed Production Methods Using Domestic Rye Cultivar in Central and North Area of Korea (중·북부지역에서 국내육성 호밀품종의 채종방법)

  • Han, Ouk-Kyu;Song, Ju-Hee;Ku, Ja-Hwan;Kim, Dea-Wook;Kwon, Young-Up;Lee, Yu-Young;Park, Chang-Hwan;Kweon, Soon-Jong;Ahn, Jong-Woong
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.38 no.1
    • /
    • pp.44-52
    • /
    • 2018
  • This experiment was conducted at Suwon, Korea from 2013 to 2015. The objective of this study was to establish the optimum seeding rate, and to clarify the nitrogen fertilizer level for rye seed production in central and north area of Korea. We used Korean rye cultivar 'Gogu' for this test. We employed a split-plot design with three replications. The main plots were designed by three seeding levels (3, 5 and $7kg\;10a^{-1}$), but other sub-plots were randomly seeded. The plots were treated with three different nitrogen fertilizer levels (3, 6 and $9kg\;10a^{-1}$). The percentage of productive tiller, number of grain per spike, fertility rate, 1 liter weight, and 1000-grain weight decreased as seeding rate increased from $3kg\;10a^{-1}$ to $7kg\;10a^{-1}$, whereas the number of spike per $m^2$ increased. Therefore the grain yields of rye had less of an effect by increasing seeding rate. There was an increase in number of spike per $m^2$, number of grain per spike, and fertility rate as nitrogen fertilizer level increased from $3kg\;10a^{-1}$ to $9kg\;10a^{-1}$, but grain yields significantly not affected by the interaction of seeding rate ${\times}$ nitrogen fertilizer levels. However, the best seeding rate and nitrogen fertilizer level for rye seed production were 5 kg and $5{\sim}6kg\;10a^{-1}$, respectively, considering seed and fertilizer reduction and the prevention of pollution by excess fertilization.

Egg Development and Larvae Morphology and Spawning Behavior of Five Striped Damselfish, Abudefduf vaigiensis (Pisces: Pomacentridae) Reared in the Laboratory (실험실에서 사육한 해포리고기 (Abudefduf vaigiensis)의 산란행동, 난 발생 및 자어의 형태발달)

  • Park, Jae Min;Jung, Hyun Ho;Han, Kyeong Ho;Cho, Jae Kwon;Kim, Na Ri;Kim, Jae Myoung;Baek, Jung Ik;Park, So Hyun
    • Korean Journal of Ichthyology
    • /
    • v.25 no.2
    • /
    • pp.82-89
    • /
    • 2013
  • The spawning behavior, development of eggs and larvae of the Five striped damselfish, Abudefduf vaigiensis were studied. The Five striped damselfish were caught at Dolsan Island, Yeosusi, Jeollanamdo from May in 2011. As a result of observation, male fish attracted female after cleaning the rock. Female left after spawning and male protected their eggs until they had hatched out. The fertilized eggs were elliptical in shape (mean long diameter: 1.06 mm; mean short diameter: 0.55 mm) and transparent. Larvae hatched at 53 hrs after fertilization in $24.5{\sim}26.5^{\circ}C$(mean $25.0^{\circ}C$). The newly hatched larvae were 2.55~2.86 mm (mean 2.71 mm, n=10) in total length and their mouth and anus were already opened. They began to eat rotifer and transformed to postlarva stage. 3 days after hatching postlarva was measured 2.74~2.97mm(mean 2.84 mm, n=10) in total length. 10 days after hatching postlarva was measured 3.85~4.20mm(mean 4.00 mm, n=10) in total length with dosal fin rays IV-5; ventral fin rays I-3; caudal fin rays 1~2.

Analyzing the Influence of Biomass and Vegetation Type to Soil Organic Carbon - Study on Seoseoul Lake Park and Yangjae Citizen's Forest - (바이오매스량과 식생구조가 토양 탄소함유량에 미치는 영향 분석 - 서서울호수공원과 양재 시민의 숲을 대상으로 -)

  • Tanaka, Riwako;Kim, Yoon-Jung;Ryoo, Hee-Kyung;Lee, Dong-Kun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.17 no.1
    • /
    • pp.123-134
    • /
    • 2014
  • Identification of methods to optimize the growth of a plant community, including the capacity of the soil to further sequester carbon, is important in urban design and planning. In this study, to construct and manage an urban park to mitigate carbon emissions, soil organic carbon of varying biomass, different park construction times, and a range of vegetation types were analyzed by measuring aboveground and belowground carbon in Seoseoul Lake Park and Yangjae Citizen's Forest. The urban parks were constructed during different periods; Seoseoul Lake Park was constructed in 2009, whereas Yangjae Citizen's Forest was constructed in 1986. To identify the differences in soil organic carbon in various plant communities and soil types, above and belowground carbon were measured based on biomass, as well as the physical and chemical features of the soil. Allometric equations were used to measure biomass. Soil total organic carbon (TOC) and chemical properties such as pH, cation exchange capacity (CEC), total nitrogen (TN), and soil microbes were analyzed. The analysis results show that the biomass of the Yangjae Citizen's Forest was higher than that of the Seoseoul Lake Park, indicating that older park has higher biomass. On the other hand, TOC was lower in the Yangjae Citizen's Forest than in the Seoseoul Lake Park; air pollution and acid rain probably changed the acidity of the soil in the Yangjae Citizen's Forest. Furthermore, TOC was higher in mono-layered plantation area compared to that in multi-layered plantation area. Improving the soil texture would, in the long term, result in better vegetation growth. To improve the soil texture of an urban park, park management, including pH control by using lime fertilization, soil compaction control, and leaving litter for soil nutrition is necessary.

Effects of Liquid Pig Manure Application on Rice Growth and Environment of Paddy Soil (돈분뇨 액비 시용이 벼의 생육 및 논 토양 환경에 미치는 영향)

  • Jeon, Weon-Tai;Park, Hyang-Mi;Park, Chang-Yeong;Park, Ki-Do;Cho, Young-Son;Yun, Eul-Soo;Kang, Ui-Gum
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.5
    • /
    • pp.333-343
    • /
    • 2003
  • This experiment was carried out to improve the utilization of liquid pig manure (LPM) for rice at the two textures of valley soil in 2000 and 2001. The soil textures were coarse loamy and fine loamy in Sachon and Jisan series, respectively. Treatments consisted of no fertilized plot, chemical fertilized plot, LPM 150%, LPM 100%, LPM 100%+NK (top dressing) 30%, LPM 70%+NK 30%, LPM 50%+NK 50% plot. LPM was applied as basal fertilizer compare to nitrogen of chemical fertilized plot. Total N contents in the LPM were 6.0 and $4.5g\;kg^{-1}$ in 2000 and 2001, respectively. After the experiment, P and K contents of soils were not difference between chemical and LPM application plots. But heavy metal contents in soils were slightly higher in LPM application plots than in chemical fertilized plot. Immediately after LPM application, ammonia gas content was $18mg\;kg^{-1}$ in LPM 150% plot, but it was $3mg\;kg^{-1}$ in LPM 50% plot. Two days after LPM application, ammonia gas content was 3 times higher in coarse loamy than in fine loamy soil. After rotary tillage, ammonia gas was not detected at all LPM treatments. This result suggests that rotary tillage can reduce the nasty smell of LPM quickly. Inorganic nitrogen, $NO_3$ and $NH_4$, contents in water of paddy was higher at coarse loamy soil from rice transplanting to tillering stage. After that season, inorganic nitrogen contents of water were not different according to soil texture and treatments. Content of $NH_4-N$ in soil solution was higher at LPM plots than chemical fertilizer plot. Total nitrogen contents in rice plant after harvesting were higher at chemical fertilization plot than LPM application plot, but K contents showed an opposite tendency. Rice yield was decreased only in LPM plots at two soil textures. But yield was not significantly difference between chemical fertilizer and LPM+top dressing plots at coarse loamy soil and increased 5% at LPM 50%+NK 50% plot at fine loamy soil in 2001.

Effect of Fertilizer Component on Turfgrass Growth and Quality of Golf Putting Greens under Traffic Stress (답압하에서 질소, 인산, 칼륨 변화가 골프코스 그린 잔디의 생육과 품질에 미치는 영향)

  • Lee, Sung-Woo;Lee, Jae-Pil;Kim, Doo-Hwan
    • Asian Journal of Turfgrass Science
    • /
    • v.21 no.2
    • /
    • pp.137-146
    • /
    • 2007
  • Traffic causes more and more stress and injury to grasses on golf course green in Korea due to the increased playing. This study compared the effect of fertilizer component (Nitrate, Phosphate, Potassium) on turfgrass growth and quality golf course green under traffic stress during early winter. Experiment was conducted by using different fertilizer components for 2 months(Oct. 1 to Nov. 30, 2005). Turfgrass leaf color, leaf texture, density and traffic tolerance were evaluated visually, and the root length(cm) and tiller density(tiller/$cm^2$) were measured. Creeping bentgrass(Agrostis palustris cv. 'Seaside II') fromthe nursery of Incheon Grand Golf Club was used. Results of this study are as followings: 1). Turfgrass color was the best in A6(20-15-10) and A5(15-15-10) treatments in the N study. Leaf texture was not different among treatments. Turf quality and traffic tolerance were the highest In A5 and A6. Root length was the longest(15.8cm) in A6 (20-15-10). Root length increased with nitrogen levels. 2). Turf color of A9(5-7.5-5) and A10(15-22.5-15) was darkest in the comparison of P study. Leaf texture was the best in A4(10-15-10) and A9. Turf quality was the best in A10. A7(10-0-10). 3). In general, to recover turfgrass damage on the putting greens during low temperature period, fertilizer amount need to be increased; and nitrogen is better than phosphate and potassium for that purpose.

Effects of the Water Temperature Differences on Rice Growth in a Paddy Field (수온차이(水溫差異)가 수도생육(水稻生育)에 미치는 영향(影響))

  • Kim, Lee-Yul;Jo, In-Sang;Kim, Heung-Bae;Lee, Yong-Hwan;Cho, Byong-Ok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.18 no.4
    • /
    • pp.359-365
    • /
    • 1985
  • The four rice varieties, Kwanak, Nongbaek, Pungsan and Nampung-byo were cultivated to examine the growth conditions and grain yield in a Gyuam SiL paddy field irrigated with cold water around $17^{\circ}C$. Water temperatures for various distances from the inlet were measured. The results were summerized as follows. 1. Culm length, panicle exertion, diameter of the 3rd internode stem, heading date, fertilization rate, ripeness rate, no. of grains per panicle and grain yield were sensitive to water temperature. Panicle length, flag-leaf length, diameter of spike-neck and no. of panicles, however, were negligibly sensitive and there were no differences among varieties. 2. Elongations of the 2nd and 3rd internode steam were unsensitive to water temperature. 1st internode elongation and 4th internode development, however, were sensitive which was major factor in the culm length. 3. Ratios of partial dry weight to total dry weight were closely correlated with water temperature, Therefore, dry weight of grain was increased with water temperature while that of plant and root decreased. 4. Chlorophyll contents were decreased with the increment of water temperature and the highest at $20^{\circ}C$. 5. There was no grain yield at $17^{\circ}C$, Increases of grain yield to water temperature per unit were order at Pungsan > Kwanak > Nongbaek > Nampung. 6. The critical temperature in grain yield was $21^{\circ}C$. Optimum temperatures of Japonica ${\times}$ Indica types were higher than those of Japonica types.

  • PDF

Assessment of Fertilizer Efficiency of Pharmaceutical Byproduct and Cosmetic Industry Wastewater Sludge as Raw Materials of Compost (제약업종 부산물 및 화장품 제조업 폐수처리오니의 비효검정)

  • Lim, Dong-Kyu;Kwon, Soon-Ik;Lee, Seung-Hwan;So, Kyu-Ho;Sung, Ki-Suk;Koh, Mun-Hwan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.2
    • /
    • pp.108-117
    • /
    • 2005
  • Pharmaceutical byproduct sludge and cosmetic industry wastewater sludge can be used as a raw material of compost. Effects of three types of pharmaceutical byproduct sludge and one type of cosmetic industry wastewater sludge on soil properties and red pepper growth were investigated in a field based concrete pot ($2{\times}2m$). These sludges and pig manure ($5Mg\;ha^{-1}$, dry basis) were incorporated into the upper of loam soil 30 days prior to transplanting red pepper. Changes in soil properties and contents of heavy metals and toxic organic compounds in soil and plant were measured. And also plant growth measurement and bioassay of soil phytotoxicity were included. Contents of heavy metals were increased in the soils treated with the sludges. Plant growth in the sludge treatments were mostly inferior to that of NPK treatment, especially in early stage. Content of N in plant was lower in all sludge treatments at early and middle growth stages, and it was especially caused by characteristics and concentration of nitrogen and organic matter of sludges. Total yield of red pepper was highest in the NPK treatment and followed by pharmaceutical sludge 3, pig manure, pharmaceutical sludge 1, and pharmaceutical sludge 2, and the yield of cosmetic sludge treatment was considerably lower than others. HEM and PAHs contents in soil of cosmetic sludge treatment were $4.80mg\;kg^{-1}$ and $2,263.2{\mu}g\;kg^{-1}$, respectively. Root elongation of lettuce exposed to the water extract of soil treated with cosmetic sludge was about 20% of that found in the test with soil extract of non fertilization treatment. At present, raw materials of compost were authorized according to the contents of organic matter, heavy metals and product processing. Toxic organic compounds analysis and bioassay would be helpful for authorization and assessment of suitability of raw materials of compost.

Effects of Application Method of Pig Compost and Liquid Pig Manure on Yield of Whole Crop Barley (Hordeum vulgare L.) and Chemical Properties of Soil in Gyehwa Reclaimed Land (계화간척지에서 돈분뇨 퇴.액비 시용이 청보리 (Hordeum vulgare L.) 수량 및 토양화학성에 미치는 영향)

  • Lee, Sang-Bok;Cho, Kwang-Min;Baik, Nam-Hyun;Lee, Jung-Jun;Oh, Young-Jin;Park, Tail-Il;Kim, Kee-Jong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.353-360
    • /
    • 2011
  • In order to develop the application method of pig compost (PC) and liquid manure (LM) for whole crop barley cultivation, experiments were conducted at Munpo series (coarse loamy, mixed, nonacid, mesic family of Typic Fluvaquents) soil in Gyehwa-reclaimed land, six plots, a LM applied rate as N% ; non-application, chemical fertilizer (CF)100, 100, 50+50, 50+CF50 and (PC30+LM40)+LM50 as basal and additional fertilizer. $NO_3^-$-N content in soil was decreased as along with the growth of plant, highest in LM100% as basal fertilization at early growth stage and highest in (PC30%+LM40%)+LM40% and CF100% at last growth stage. Amount of $NO_3^-$-N and $NH_4^+$-N in soil was high in (PC30%+LM40%)+LM40% and CF100% of top soil but in subsoil significant difference was little in all treatment. Amount of OM, $A_V.P_2O_5$, T-N, exchangeable Ca and Na in soil was higher (PC30%+LM40%)+LM40% than non-application after harvest. Amount of nutrient uptake in plant was higher in CF100% and split application of LM than LM 100% application. Nitrogen utilization rate was in the order of CF100% >LM50%+LM50%=LM50%+CF50%>(PC30%+LM40%)+LM40% >LM100%. The yield of whole crop barley in (PC30%+LM40%)+LM40% and CF100% was 3.2 times more than in non-application ($309kg\;10a^{-1}$). Feed values such as crude protein and TDN was increased 1.0% ~ 1.4% in LM as split application than basal 100% treatment. Accordingly, in order to increase yield of a whole crop barley with application PC+LM in reclaimed land treat split application rather than to treat LM 100% into the land.

Effects of the Application of Livestock Manure Compost on Reducing the Chemical Fertilizer Use for the Lettuce Cultivation in Green House (시설상추 재배시 축분퇴비 이용에 따른 화학비료 절감효과 평가)

  • Kang, Chang-Sung;Roh, An-Sung;Kim, Sung-Kee;Park, Kyeong-Yeol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.457-464
    • /
    • 2011
  • Livestock manure compost (LC) generally contains high content of phosphorus, therefore can be a substitute for phosphorus fertilizers. In this experiment of the cultivation of lettuce in green house, the possibility of LC as a subsitute for phosphorus fertilizer was investigated and the fertilizer efficiency of nitrogen and potassium in LC as compared with chemical N fertilizer (urea) and K fertilizer (potassium chloride) was examined. In proportion to the increase in the application rate of nitrogen fertilizer, soil pH declined, whereas EC and $NO_3$-N content became higher. The application of LC appeared to increase the soil content of organic matter, available phosphate, exchangeable calcium, magnesium and sodium more than that of chemical fertilizer. Supplementation of the K fertilizer by the lack amount from the application of LC resulted in the same exchangeable potassium content in soil with NPK plot in which N, P and K fertilizers were applied by the amount of soil test recommendation. The relationship between soil $NO_3$-N content and nitrogen application rate from fertilizer and compost showed as y=0.57717a+0.19760b+74.65 ($R^2$=0.6347) in which y is the soil $NO_3$-N content (mg $kg^{-1}$), a is nitrogen application rate from fertilizer and b is nitrogen application rate from compost (kg $ha^{-1}$), respectively. From this equation, the supply ability of $NO_3$-N into soil of LC exhibited about 34% (pig manure compost 37.0, chicken manure compost 34.7, cattle manure compost 23.3) of nitrogen fertilizer (urea).