• Title/Summary/Keyword: ferromagnetic superconductor

Search Result 12, Processing Time 0.028 seconds

Study of superconductor bearing stiffness according to shape of rotor (로터 형상에 따른 초전도 베어링 강성 변화)

  • 윤희중;한영희;한상철;정년호;김경진;박병삼;성태현
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.240-242
    • /
    • 2003
  • The properties of superconductor bearing are depend on shape of rotor, especially thickness of ferromagnetic shim between permanent magnets. The levitation forces and stiffness of superconductor bearings as the thickness of the ferromagnetic shim were calculated and measured, Frozen image model and difference of magnetization per unit volume of the superconductor were used to calculate stiffness for two models. The calculated values had similar trend with the measured one. From the results, an optimal design of the rotor was selected.

  • PDF

Research Trend and Prospect in Ferromagnetic Superconductor (강자성 초전도체의 연구동향과 전망)

  • Han, Sang-Wook
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.2
    • /
    • pp.66-72
    • /
    • 2012
  • The findings of ferromagnetic superconductor have attracted much attention not only for fundamental research to investigate how the antagonistic properties of ferromagnetism and superconductivity coexist peacefully but also for potential technological applications. Firstly, in order to help for understanding the ferromagnetic superconductor, I have explained the orbital and paramagnetic pair-breaking effects of magnetic field, which breaks the superconducting Cooper pairs. In addition to such effects of magnetic field, the singlet Cooper pairs become unstable upon going through the ferromagnetic materials by the proximity effect. The proximity effect occurs at the interface of thin films composing of superconductor and ferromagnet and leads to have very short penetration depth of Cooper pairs. However, a type of odd-frequency triplet in comparison with the singlet could be very stable and has a longer effective depth. It needs to be explored for the innovative spintronic devices. Finally, various ferromagnetic superconductors coexist and the lower-dimensional materials under the Quantum confinement effect have been introduced.

Andreev Reflection in Metal- and Ferromagnet-d-wave Superconductor Tunnel Junctions

  • Kim, Sun-Mi;Lee, Kie-Jin;Hwang, Yun-Seok;Cha, Deok-Joon;Ishibashid, Takayuki
    • Progress in Superconductivity
    • /
    • v.2 no.1
    • /
    • pp.43-46
    • /
    • 2000
  • We report on the tunneling spectroscopy of tunnel junctions using d-wave superconductor in relation to Andreev reflection. The zero bias conductance peak (ZBCP) which has maximum on [110] direction of ab-plane is observed on metal $Au/YBa_2Cu_3O_y$ tunnel junctions while it is suppressed on the ferromagnetic $Co/Au/YBa_2Cu_3O_y$ tunnel junctions. The effects of Andreev reflection on the differential conductance of each junction are dependent on the tunnel direction. For the $Co/Au/YBa_2Cu_3O_y$ junction, the suppression of Andreev reflection takes place by spin-polarized quasiparticles tunneling from a ferromagnetic material to a d-wave superconductor. By comparing these experimental results with recent theoretical works on Andreev reflection, the existence of Andreev bound state due to the d-wave symmetry of the pair potential is verified in high-$T_c$ superconductor.

  • PDF

Suppression of superconductivity in superconductor/ferromagnet multilayers

  • Hwang, T.J.;Kim, D.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.1
    • /
    • pp.33-36
    • /
    • 2016
  • Suppression of the superconducting transition temperature ($T_c$) of NbN thin films in superconductor/ferromagnet multilayers has been investigated. Both superconducting NbN and ferromagnetic FeN layers were deposited on thermally oxidized Si substrate at room temperature by using reactive magnetron sputtering in an $Ar-N_2$ gas mixture. The thickness of FeN films was fixed at 20 nm, while the thickness of NbN films was varied from 3 nm to 90 nm. $T_c$ suppression was clearly observed in NbN layers up to 70 nm thickness when NbN layer was in proximity with FeN layer. For a given thickness of NbN layer, the magnitude of $T_c$ suppression was increased in the order of Si/FeN/NbN, Si/NbN/FeN, and Si/FeN/NbN/FeN structure. This result can be used to design a spin switch whose operation is based on the proximity effect between superconducting and ferromagnetic layers.

Superconducting critical temperature in FeN-based superconductor/ferromagnet bilayers

  • Hwang, T.J.;Kim, D.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.2
    • /
    • pp.5-7
    • /
    • 2016
  • We present an experimental investigation of the superconducting transition temperatures, $T_c$, of superconductor/ferromagnet bilayers with varying the thickness of ferromagnetic layer. FeN was used for the ferromagnetic (F) layer, and NbN and Nb were used for the superconducting (S) layer. The results were obtained using three different-thickness series of the S layer of the S/F bilayers: NbN/FeN with NbN thickness, $d_{NbN}{\approx}9.3nm$ and $d_{NbN}{\approx}10nm$, and Nb/FeN with Nb thickness $d_{Nb}{\approx}15nm$. $T_c$ drops sharply with increasing thickness of the ferromagnetic layer, $d_{FeN}$, before maximal suppression of superconductivity at $d_{FeN}{\approx}6.3nm$ for $d_{NbN}{\approx}10nm$ and at $d_{FeN}{\approx}2.5nm$ for $d_{Nb}{\approx}15nm$, respectively. After shallow minimum of $T_c$, a weak $T_c$ oscillation was observed in NbN/FeN bilayers, but it was hardly observable in Nb/FeN bilayers.

Andreev reflection in metal- and ferromagnet-d-wave superconductor tunnel Junction

  • Kim, Sun-Mi;Hwang, Yun-Seok;Cha, Deok-Joon;Lee, Kie-Jin
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.141-144
    • /
    • 2000
  • We report on the influence of d-wave pairing symmetry in high-T$_c$ superconductor by tunneling spectroscopy. The zerobias conductance peak(ZBCP) which is produced by tunneling through the ab-plane is observed on both of metal Au/YBa$_2$Cu$_3$O$_y$(N/S) tunnel junctions and ferromagnet Co/Au/ YBa$_2$Cu$_3$O$_y$(F/N/S) tunnel junctions. The effects of Andreev reflection on the differential conductance of each junctions are dependent on the tunnel direction. For the S/N/F junction, it appears the suppression of the ZBCP due to the suppression of Andreev reflection at the interface between a ferromagnetic material and a d-wave superconductor. By comparing these experimental results with recent theoretical works on Andreev reflection, the existence of Andreev bound state is verified in high-T$_c$ superconductor, due to the d-wave symmetry of the pair potential.

  • PDF

Spin injection and transport properties of Co/Au/Y$Ba_2$$Cu_3$$O_y$ tunnel junctions

  • Lee, Kiejin;Kim, Sunmi;Ishibashi, Takauki;Cha, Deokjoon
    • Progress in Superconductivity
    • /
    • v.3 no.1
    • /
    • pp.70-73
    • /
    • 2001
  • We report the spin injection and transport properties of three terminal devices of Co/Au/$YBa_2$$Cu_3$$O_{y}$(F/N/S) tunnel junctions by injection of spin-polarized quaiparticles using a cobalt ferromagnetic injector. The observed current gain depends on the thickness of Au interlayer and is directly related to the nonequilibrium magnetization due to spin relaxation effects. The tunnel characteristic of a F/N/S tunnel junctions exhibited a zero bias conductance peak (ZBCP). The suppression of the ZBCP was observed due to the suppression of Andreev reflection at the interface, which is due to the spin scattering processes at the interface between a ferromagnetic and a d-wave superconductor.r.

  • PDF

Possible p-wave condensed conductor (or superconductor) for La$_{1-x}Ca_xMnO_3$ films (La$_{1-x}Ca_xMnO_3$ 박막에서 p파 초전도의 가능성)

  • Kim, Hyun-Tak;Kang, Kwang-Yong
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.200-205
    • /
    • 1999
  • In the ferromagnetic phase with electrons for La$_{1-x}$(Ca or Sr)$_x$MnO$_3$, films, a remnant resistivity of the order of 10$^{-8}$ ${\omega}$m is observed up to 100 K and increases exponentially with temperature up to T$_c$ and above one Tesla as a function of magnetic field strength (a positive magnetoresistivity). The phase below T$_c$ is regarded as a polaronic state with a polaronic tunneling conduction. Possible p-wave condensation (or superconductor) with a parabolic density of states and the phase separation are discussed on the basis of the two-fold degeneracy of ${\varrho}_{\delta}$ orbitals.

  • PDF

Electronic Structures, Magnetic, and Superconducting Properties of bcc Ni and V-doped Ni (Ni16-xVx)

  • Kim, Bong-Jae;Choi, Hong-Chul;Kim, Kyoo;Min, B.I.
    • Journal of Magnetics
    • /
    • v.13 no.4
    • /
    • pp.128-131
    • /
    • 2008
  • We have investigated the electronic structures and magnetic properties of both undoped and doped bcc Ni using the full-potential linearized augmented plane wave (FLAPW) band method. A ferromagnetic ground state is obtained at the equilibrium volume of bcc Ni. When the system is under strain, the nonmagnetic ground state is stabilized. When the Ni is doped with V, the $Ni_{16-x}V_x$ material loses its magnetic properties when x > 2. We have also discussed the possible superconducting properties of $Ni_{16-x}V_x$.