• 제목/요약/키워드: ferromagnet

검색결과 77건 처리시간 0.022초

Monte Carlo Study of Layered Heisenberg Ferromagnet

  • Lee, Kyuwon
    • Journal of Magnetics
    • /
    • 제6권4호
    • /
    • pp.119-121
    • /
    • 2001
  • Monte Carlo simulation was employed to study the phase transition in the classical Heisenberg ferromagnet with variable interlayer interactions. The measured transition temperatures show a strong logarithmic dependence on J/J'where J and J'are the intralayer and the interlayer exchange interaction, respectively. The results were compared with the theoretical expectations and an empirical formula for the critical coupling was stained.

  • PDF

Growth and characterization of superconductor-ferromagnet thin film heterostructure La1.85Sr0.15CuO4/SrRuO3

  • Kim, Youngdo;Sohn, Byungmin;Kim, Changyoung
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제23권2호
    • /
    • pp.10-13
    • /
    • 2021
  • Superconductor-ferromagnet thin film heterostructure is an ideal system for studying the interplay between superconductivity and ferromagnetism. These two antagonistic properties combined in thin film heterostructure create interesting proximity effects such as spin-triplet superconductivity. Thin film heterostructure of optimally doped La2-xSrxCuO4(LSCO) cuprate superconductor and SrRuO3(SRO) ruthenate ferromagnet has been grown by pulsed laser deposition. Its temperature-dependent resistivity and Hall effect measurements show that our LSCO/SRO heterostructure has both superconductivity and ferromagnetism. In the Hall effect measurement results, we find additional hump-like structures appear in the anomalous Hall effect signal in the vicinity of superconducting transition. We conclude that giant magnetoresistance of the LSCO layer distorts the AHE signal, which results in a hump-like structure.

Spin Transfer Torque in Ferromagnet-Normal Metal-Antiferromagnet Junctions

  • Lee, Hyun-Woo;Yang, Hyun-Soo
    • Journal of Magnetics
    • /
    • 제16권2호
    • /
    • pp.92-96
    • /
    • 2011
  • This study investigated theoretically the properties of the spin transfer torque acting on a ferromagnet in a ferromagnet-normal metal-antiferromagnet junction. Earlier work showed that the angular dependence of the spin transfer torque can be a wavy-type if the junction satisfies a special symmetry. This paper reports a simple model analysis that allows a derivation of the wavy angular dependence without taking advantage of the symmetry. This result suggests that the wavy angular dependence can appear even when the symmetry is broken. As an illustration, the angular dependence was calculated as a function of the degree of the compensation at the normal metal-antiferromagnet interface. The implications of the result for the current-induced magnetization precession are discussed.

Andreev reflection in metal- and ferromagnet-d-wave superconductor tunnel Junction

  • Kim, Sun-Mi;Hwang, Yun-Seok;Cha, Deok-Joon;Lee, Kie-Jin
    • 한국초전도학회:학술대회논문집
    • /
    • 한국초전도학회 2000년도 High Temperature Superconductivity Vol.X
    • /
    • pp.141-144
    • /
    • 2000
  • We report on the influence of d-wave pairing symmetry in high-T$_c$ superconductor by tunneling spectroscopy. The zerobias conductance peak(ZBCP) which is produced by tunneling through the ab-plane is observed on both of metal Au/YBa$_2$Cu$_3$O$_y$(N/S) tunnel junctions and ferromagnet Co/Au/ YBa$_2$Cu$_3$O$_y$(F/N/S) tunnel junctions. The effects of Andreev reflection on the differential conductance of each junctions are dependent on the tunnel direction. For the S/N/F junction, it appears the suppression of the ZBCP due to the suppression of Andreev reflection at the interface between a ferromagnetic material and a d-wave superconductor. By comparing these experimental results with recent theoretical works on Andreev reflection, the existence of Andreev bound state is verified in high-T$_c$ superconductor, due to the d-wave symmetry of the pair potential.

  • PDF

Effect of Proton Irradiation on the Magnetic Properties of Antiferromagnet/ferromagnet Structures

  • Kim, Dong-Jun;Park, Jin-Seok;Ryu, Ho Jin;Jeong, Jong-Ryul;Chung, Chang-Kyu;Park, Byong-Guk
    • Journal of Magnetics
    • /
    • 제21권2호
    • /
    • pp.159-163
    • /
    • 2016
  • Antiferromagnet (AFM)/ferromagnet (FM) bilayer structures are widely used in the magnetic devices of sensor and memory applications, as AFM materials can induce unidirectional anisotropy of the FM material via exchange coupling. The strength of the exchange coupling is known to be sensitive to quality of the interface of the AFM/FM bilayers. In this study, we utilize proton irradiation to modify the interface structures and investigate its effect on the magnetic properties of AFM/FM structures, including the exchange bias and magnetic thermoelectric effect. The magnetic properties of IrMn/CoFeB structures with various IrMn thicknesses are characterized after they are exposed to a proton beam of 3 MeV and $1{\sim}5{\times}10^{14}ions/cm^2$. We observe that the magnetic moment is gradually reduced as the amount of the dose is increased. On the other hand, the exchange bias field and thermoelectric voltage are not significantly affected by proton irradiation. This indicates that proton irradiation has more of an influence on the bulk property of the FM CoFeB layer and less of an effect on the IrMn/CoFeB interface.