• Title/Summary/Keyword: ferritin protein

Search Result 113, Processing Time 0.018 seconds

Purification and Characterization of Recombinant Tadpole H-Chain Ferritin in Escherichia coli

  • Chang, So-Ran;Kim, Young-Taek;Kim, Kyung-Suk
    • BMB Reports
    • /
    • v.28 no.3
    • /
    • pp.238-242
    • /
    • 1995
  • The tadpole H-ferritin produced in E. coli was purified and its molecular properties were investigated to obtain information about the contribution of the H-subunit in the reaction of iron core formation. All the expressed subunits were assembled into complete holoprotein in vitro, presumably 24-mer, and the protein was heat-stable. Electron microscopy revealed that the recombinant ferritin forms spherically and contains iron core. No difference was observed in the absorption spectrum of the expressed protein compared to that of the natural ferritin. The Ouchterlony double diffusion of the expressed protein showed that the H-chain ferritin shares an antigenic determinant with natural tadpole ferritin. Rabbit anti-horse spleen ferritin discriminated the H-ferritin from natural ferritin. The rate of ferritin formation by the recombinant H-chain apoferritin was determined to be higher than that shown by natural tadpole ferritin, which consists of H, M and L-subunits. This phenomenon may be caused by the absence of M and L-subunits in the recombinant H-chain apoferritin.

  • PDF

Refolding of Fusion Ferritin by Gel Filtration Chromatography(GFC)

  • Kim, Hyung-Won;Kim, In-Ho
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.6
    • /
    • pp.500-504
    • /
    • 2005
  • Fusion ferritin (heavy chain ferritin, $F_H+$ light chain ferritin, $F_L$), an iron-binding protein, was primarily purified from recombinant Escherichia coli by two-step sonications with urea [1]. Unfolded ferritin was refolded by gel filtration chromatography (GFC) with refolding enhancer, where 50 mM Na-phosphate (pH 7.4) buffer containing additives such as Tween 20, PEG, and L-arginine was used. Ferritin is a multimeric protein that contains approximately 20 monomeric units for full activity. Fusion ferritin was expressed in the form of inclusion bodies (IBs). The IBs were initially solubilized in 4 M urea denaturant. The refolding process was then performed by decreasing the urea concentration on the GFC column to form protein multimers. The combination of the buffer-exchange effect of GFC and the refolding enhancers in refolding buffer resulted in an efficient route for producing properly folded fusion ferritin.

Molecular Cloning of a cDNA Encoding a Ferritin Subunit from the Spider, Araneus ventricosus

  • Jin, Byung-Rea;Han, Ji-Hee;Kim, Seong-Ryul;Sohn, Hung-Dae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.4 no.2
    • /
    • pp.163-168
    • /
    • 2002
  • We report for the first time the cDNA sequence encoding a ferritin subunit from the spiders Araneus ventricosus. The complete cDNA sequence of A. ventricosus ferritin subunit comprised 516 bp with 172 amino acid residues. The A. ventricosus ferritin subunit cDNA contained a conserved iron responsive element sequence in the 5 untranslated region. An alignment of the deduced protein sequence of the A. ventricosus ferritin subunit gene to that of other heavy chain ferritin molecules showed that A. ventricosus ferritin subunit is most similar to the great pond snail, Lymnaea stagnalis, ferritin with 70.2% of protein sequence identity.

Transformation of Lettuce (Lactuce sativa L.) Using Iron Storage Protein Ferritin Gene (철 저장단백질 관련 Ferritin 유전자를 이용한 상추의 형질전환)

  • 김성하;노일섭;최장선;강권규
    • Korean Journal of Plant Tissue Culture
    • /
    • v.28 no.3
    • /
    • pp.147-151
    • /
    • 2001
  • Explants of Lactuce sativa cultivar, chungchima, were co-cultivated with Agrobacterium tumefaciences LBA4404, EHA101 strains containing nptll gene and ferritin gene encoding iron storage protein from soybean for transformation. Through initial selection of regenerated explants by culturing on a kanamycin and carbenicillin containing MS medium, multiple shoots were obtained after 2 months of culture. For a complementary step of selection, putative transgenic shoots were transferred to 1/2 MS basal medium supplemented with 100 mg/L kanamycin and 500 mg/L carbenicillin. The selected shoots were tested with PCR analysis using nptll, ferritin specific primers whether ferritin gene was introduced to genome of the plants. These results confirmed that produced the specific PCR bands in the putative transgenic lines. Additionally the Northern blot showed that transcripts of ferritin gene were detected in mature leaf of the transgenic lines. These results suggest that ferritin gene be successfully integrated and transcribed in the putative transgenic lettuce plants.

  • PDF

Regulation of Ferritin Synthesis by Iron-responsive Element in 5'-Untranslated Region (5'-Untranslated Region에 존재하는 Iron Responsive Element에 의한 Ferritin 합성조절)

  • Chung, In-Sik;Lee, Jung-Lim;Kim, Hae-Yeong
    • Applied Biological Chemistry
    • /
    • v.41 no.3
    • /
    • pp.224-227
    • /
    • 1998
  • The expression of ferritin involved in iron metabolism is regulated at the translational level by the interaction of iron regulatory protein with iron-responsive element(IRE) in the 5'-untranslated region of ferritin transcript. To identify the role of structural element utilized for translational regulation of ferritin, we studied the effects of mutations in the ferritin IRE by measuring IRP binding activity and translational activity. Our data suggest that the cytosine at bulged position of IRE within ferritin is important for the formation of RNA secondary structure involved in translational regulation.

  • PDF

Optimization of the Expression of the Ferritin Protein Gene in Pleurotus eryngii and Its Biological Activity (큰느타리버섯에서 석충 페리틴 단백질 유전자의 발현 최적화 및 생물학적 활성)

  • Woo, Yean Jeong;Oh, Si Yoon;Choi, Jang Won
    • The Korean Journal of Mycology
    • /
    • v.47 no.4
    • /
    • pp.359-371
    • /
    • 2019
  • To optimize the expression and secretion of ferritin protein associated with ion storage in the mushroom, Pleurotus eryngii, a recombinant secretion vector, harboring the ferritin gene, was constructed using a pPEVPR1b vector under the control of the CaMV 35S promoter and signal sequence of pathogen related protein (PR1b). The ferritin gene was isolated from the T-Fer vector following digestion with EcoRI and HindIII. The gene was then introduced into the pPEVPR1b secretion vector, and it was then named pPEVPR1b-Fer. The recombinant vector was transferred into P. eryngii via Agrobacterium tumefaciens-mediated transformation. The transformants were selected on MCM medium supplemented with kanamycin and its expression was confirmed by SDS-PAGE and western blotting. Expression of ferritin protein was optimized by modifying the culture conditions such as incubation time and temperature in batch and 20 L airlift type fermenter. The optimal conditions for ferritin production were achieved at 25℃ and after incubating for 8 days on MCM medium. The amount of ferritin protein was 2.4 mg/g mycelia, as measured by a quantitative protein assay. However, the signal sequence of PR1b (32 amino acids) seems to be correctly processed by peptidase and ferritin protein may be targeted in the apoplast region of mycelia, and it might not be secreted in the culture medium. The iron binding activity was confirmed by Perls' staining in a 7.5% non-denaturing gel, indicating that the multimeric ferritin (composed of 24 subunits) was formed in P. eryngii mycelia. Mycelium powder containing ferritin was tested as a feed additive in broilers. The addition of ferritin powder stimulated the growth of young broilers and improved their feed efficiency and production index.

Oxidative modification of ferritin induced by methylglyoxal

  • An, Sung-Ho;Lee, Myeong-Seon;Kang, Jung-Hoon
    • BMB Reports
    • /
    • v.45 no.3
    • /
    • pp.147-152
    • /
    • 2012
  • Methylglyoxal (MG) was identified as an intermediate in non-enzymatic glycation and increased levels were reported in patients with diabetes. In this study, we evaluated the effects of MG on the modification of ferritin. When ferritin was incubated with MG, covalent crosslinking of the protein increased in a time- and MG dose-dependent manner. Reactive oxygen species (ROS) scavengers, $N-acetyl-_L-cysteine$ and thiourea suppressed the MG-mediated ferritin modification. The formation of dityrosine was observed in MG-mediated ferritin aggregates and ROS scavengers inhibited the formation of dityrosine. During the reaction between ferritin and MG, the generation of ROS was increased as a function of incubation time. These results suggest that ROS may play a role in the modification of ferritin by MG. The reaction between ferritin and MG led to the release of iron ions from the protein. Ferritin exposure to MG resulted in a loss of arginine, histidine and lysine residues. It was assumed that oxidative damage to ferritin caused by MG may induce an increase in the iron content in cells, which is deleterious to cells. This mechanism, in part, may provide an explanation or the deterioration of organs under diabetic conditions.

Investigation of useful components in soybean seeds: Purification and characterization of soybean ferritin (콩 유용성분 탐색에 관한 연구: 콩 Ferritin의 정제 및 특성)

  • Seo, Kyung-Won;Oh, Suk-Heung
    • Applied Biological Chemistry
    • /
    • v.41 no.7
    • /
    • pp.522-526
    • /
    • 1998
  • Ferritin from germinated soybean seeds was purified by ammonium sulfate precipitation (0.55 saturation), ion-exchange chromatography on DEAE-cellulose, gel filtration chromatography on Sephacryl S-300, and HPLC with Bio-Scale Q2 column. SDS-PAGE analysis showed that the purified ferritin is composed of subunit with an apparent M, 21,000. The molecular mass of the native soybean ferritin estimated by gel filtration on Sephacryl S-300 and non-denaturing polyacrylamide gel electrophoresis appeared to be $510{\sim}560\;kDa$. Soybean ferritin contained 833 mol Fe/mol protein, which is 31-fold more iron than pumpkin ferritin and stained positive for iron on non-denaturing gel. Soybean ferritin cross-reacted with anti-soybean rabbit ferritin antiserum.

  • PDF

Variation of Iron Content and Ferritin Distribution during Development Stage under Conditions of Iron Nutritional Status from Hydroponic Culture in Red Pepper ( Capsicum annuum L. )

  • Kim, Young-Ho;Lee, Young-Ok;Nou, Ill-Sup;Shin, Ill-Yong;Kameya, Toshiaki;Saito, Takashi;Kang, Kown-Kyoo
    • Plant Resources
    • /
    • v.1 no.1
    • /
    • pp.1-5
    • /
    • 1998
  • Total iron content and ferritin distribution have been determined in red pepper(Capsicum annuum L.) during development stage under conditions of iron nutritional status from hydroponic culture. Color of the leaves become chlorotic on iron deficient and high concentration. The plant height on each iron concentration had retarding effect at concentration lower than $25\muM$ and greater than 125$25\muM$. In normal green leaves. Total iron content was almost constant with a mean value of $2.5\mumole$ of iron/mg of dry matter, except at 63day, for which it increases slightly to $4\mumole$. Howere, iron content of chlorotic plants grew on iron free medium was not almost detectable. Also in post chlorotic leaves(++Fe), iron content was evidently increase unitl 7days after transfer on liquid medium, but decreased from after 14days. Also, ferritin protein analysed total protein extracts prepared from leaves of different ages using antibodies raised against ferritin protein. Ferritin protein deereased progressively during the first week of germination and was not detectable in vegetative tissues. Ferritin protein in post chlorotic leaves wasevidently strongly cnhanced until 11days after transfer on liquid medium but decreased until the leves became chlorotic.

  • PDF

Expression of a Carboxy-Terminal Deletion Mutant of Recombinant Tadpole H-Chain Ferritin in Escherichia coli

  • Lee, Mi-Young;Kim, Young-Taek;Kim, Kyung-Suk
    • BMB Reports
    • /
    • v.29 no.5
    • /
    • pp.411-416
    • /
    • 1996
  • In order to study the role of the protein shell in both iron uptake and iron core formation of ferritin, we constructed a deletion mutant of the ferritin gene and expressed the mutant gene in Escherichia coli, This mutant was obtained by introducing an amber mutation at position Pro-157 and a deletion of the 19 amino acid residues at the carboxy-terminus of the recombinant tadpole H-chain ferritin. The deleted amino acids correspond to E-helix forming the hydrophobic channel in the protein. E. coli harboring the plasmid pTHP157, which contains the deleted gene, was grown at $23^{\circ}C$ in the presence of 0.1 mM IPTG, and the induced protein appeared to be partly soluble. Nondenaturing polyacrylamide gel electrophoresis showed that the expressed mutant H-chains coassemble into holoprotein, suggesting that E-helix is not necessary for assembly of the subunits as reported for human H-chain ferritin. Its ability in iron core formation was proven in an Fe staining gel, the result disagreeing with the observation that the hydrophobic channel is necessary for iron core formation in human H-chain ferritin.

  • PDF